The present study aimed to investigate the targeting effect of H7K(R2)2-modified pH -sensitive liposomes on U87-MG cells. Using coumarin-6 as a fluorescence probe, we prepared H7K(R2)2-modified p H-sensitive liposomes(designated as coumarin-6-PSL-H7K(R2)2). The flow cytometry assay was used to evaluate the effect of H7K(R2)2 proportions on the cellular uptake and endocytosis pathways of coumarin--6--PSL--H7K(R2)2 on U87-MG cells. The circular dichroism(CD) spectroscopy assay was used to investigate the secondary structures of H7K(R2)2 peptide at pH 7.4 and H 6.8, respectively. Our results indicated that the 2.5% proportion of H7K(R2)2 in the coumarin-6--PSL-H7K(R2)2 was superior to those of 1% and 3.5% of H7K(R2)2. The uptake of coumarin--6-PSL--H7K(R2)2 on U87--MG cells was not inhibited by filipin, M-β--CD or chlorpromazine. The secondary structure of H7K(R2)2 at pH 6.8 was mostly presented as β--turn. In conclusion, we suggested that the appropriate proportion of H7K(R2)2 in the H7K(R2)2--modified pH--sensitive liposomes could be set at 2.5%. The cellular uptake pathway for H7K(R2)2-modified pH--sensitive liposomes was via the cell penetrating capacity of H7K(R2)2 which responded to acidic condition. The secondary structure of H7K(R2)2 at pH 6.8, which was presented as the shape of hairpin, might be mainly responsible for its targeting and cell penetrating effect.
In the present research, we selected Sylysia as a porous material and febuxostat(FBT) as model drug to prepare the FBT SiO2 solid dispersions using a solvent evaporation method. We firstly established an HPLC method for determining FBT in our prepared FBT SiO2 solid dispersions. And then, the characteristics of FBT SiO2 solid dispersions were investigated, including differential scanning calorimetry(DSC), powder X-ray diffraction(PXRD), scanning electron microscope(SEM), particle size and distribution. The solubility and dissolution of FBT SiO2 solid dispersion were also evaluated. The results of DSC and PXRD showed that the FBT existed in an amorphous state in FBT SiO2 solid dispersions. The SEM and particle size results indicated that the shape and average particle size of FBT SiO2 solid dispersions was similar to the Sylysia. The solubility and dissolution of FBT in FBT SiO2 solid dispersions were significantly enhanced compared with the pure FBT. In conclusion, we successfully prepared FBT SiO2 solid dispersions to increase the solubility and dissolution rate of the poorly water-soluble FBT.