基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。
采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探究光谱信息与不同掺假比例卡拉胶之间的定量关系。结果表明全波段光谱(900~1700 nm)所构建的PLS校正集模型均方根误差(Root mean square error,RMSE)为1.74%,预测模型RMSE为3.16%。表明基于全波段所建立的PLS模型具有较优的预测性能。利用连续投影算法(Successive projection algorithm,SPA)筛选获得11个特征波长,并优化全波长PLS模型,将预测集样品带入,以验证模型的预测效果,结果表明SPA算法结合PLS建模方法所建立的模型预测效果更优,预测集相关系数(RP)为0.93,均方根误差(Root mean square error of prediction,RMSEP)为3.51%,预测偏差(Residual predictive deviation,RPD)为2.66。试验表明利用高光谱成像技术可实现对注胶猪肉的快速无损检测。