Objective To investigate the effects of 14-3-3 protein overexpression on the 1-methyl-4-phenylpyridinium (MPP^+) induced pheochromocytoma (PC12) cell death and the potential mechanisms. Methods pcDNA3.1(+)-14-3-3 plasmids, which could be expressed in mammalian cell, were constructed and transfected into PC 12 cells with Lipofectamine 2000. The expression of 14-3-3 protein, Bcl-2 protein, and BAD protein were determined by western blot. 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microplate reader, and flow cytometric analysis were used to measure cell viability, the caspase activity, and apoptotic ratio respectively. Results (1) The expression of 14-3-3 protein increased significantly three weeks after pcDNA3.1(+)-14-3-3 plasmids transfected into PC 12 cells. (2) MPP^+ caused a decrease of cell viability in a dose-dependent manner. At 100μmol/L MPP^+, cell viability reduced approximately 50%. (3) The caspase activity increased along with the MPP^+ concentrations rising and reached its maximum value (0.34 μmol/mg protein) at 100 μmol/L MPP*. However caspase activity decreased significantly when the MPP^+ concentration exceeded 100 μmol/L. (4) Overexpression of 14-3-3 protein decreased the apoptosis ratio of PC 12 cells treated with 100μmol/L MPP^+ from 26.5% to 8.6%. (5) Bcl-2 protein tended to decrease but BAD protein tended to increase after treatment of PC 12 cells with 100 μmol/L MPP^+. Overexpression of 14-3-3 protein significantly increased the cellular level of Bcl-2 protein and decreased that of BAD protein. Conclusion Overexpression of 14-3-3 protein may reduce MPP^+-induced apoptotic cell death in PC12 cells by up-regulating the Bcl-2 expression and down-regulating the BAD expression. These results may provide a promising target for treatment of Parkinson's disease.