An integratable distributed Bragg reflector laser is fabricated by low energy ion implantation induced quantum well intermixing.A 4 6nm quasi continuous wavelength tuning range is achieved by controlling phase current and grating current simultaneously,and side mode suppression ratio maintains over 30dB throughout the tuning range except a few mode jump points.
A semiconductor optical amplifier gate based on tensile strained quasi bulk InGaAs is developed.At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band filling effect.Moreover,the most important is that very low polarization dependence of gain (<0 7dB),fiber to fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm) and the whole L band (1570~1610nm).The gating time is also improved by decreasing carrier lifetime.The wide band polarization insensitive SOA gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.
The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain buffer layer is used to avoid indium segregation. The threshold current of the device uncoated with length of 300μm is 11.5mA. The maximum output power is 14mW at 100mA. A side mode suppression ratio of 35.5dB is obtained.