To alleviate the distortion of XRII X-ray image intensifier images in the C-arm CT computer tomography imaging system an algorithm based on the Delaunay triangulation interpolation is proposed.First the causes of the phenomenon the classical correction algorithms and the Delaunay triangulation interpolation are analyzed.Then the algorithm procedure is explained using flow charts and illustrations. Finally experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects.In the case of the same center the root mean square distances RMSD and standard deviation STD between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4 ×10 -14 and 5.354 2 ×10 -14 respectively.They increase to 1.790 3 2.388 8 2.338 8 and 1.262 0 1.268 1 1.202 6 after applying the quartic polynomial model L1 and model L2 to the distorted images respectively.The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489 × 10 -13 and 2.449 8 ×10 -13 when their centers do not coincide. When the quartic polynomial model L1 and model L2 are applied to the distorted images they are 1.770 3 2.388 8 2.338 8 and 1.269 9 1.268 1 1.202 6 respectively.
To solve the problem that metal artifacts severely damage the clarity of the organization structure in computed tomography(CT) images, a sinogram fusion-based metal artifact correction method is proposed. First, the metal image is segmented from the original CT image by the pre-set threshold. The original CT image and metal image are forward projected into the original projection sinogram and metal projection sinogram, respectively. The interpolation-based correction method and mean filter are used to correct the original CT image and preserve the edge of the corrected CT image, respectively. The filtered CT image is forward projected into the filtered image sinogram. According to the position of the metal sinogram in the original sinogram and filtered image sinogram, the corresponding sinograms PM^D ( in the original sinogram) and PM^C ( in the filtered image sinogram)can be acquired from the original sinogram and filtered image sinogram, respectively. Then, PM^D and PM^C are fused into the fused metal sinogram PM^F according to a certain proportion.The final sinogram can be acquired by fusing PM^F , PM^D and the original sinogram P^O. Finally, the final sinogram is reconstructed into the corrected CT image and metal information is compensated into the corrected CT image.Experiments on clinical images demonstrate that the proposed method can effectively reduce metal artifacts. A comparison with classical metal artifacts correction methods shows that the proposed metal artifacts correction method performs better in metal artifacts suppression and tissue feature preservation.