以ChatGPT为代表的新一轮人工智能技术浪潮正推动人类社会全面变革,科学研究范式正加速转换,一场人工智能驱动的科学研究(AI for Science,AI4S)革命正在到来。分析了AI4S的基本概念和特点,从数学、物理、生物、材料等角度简要综述了AI4S的发展现状。大力发展AI4S对提高国家竞争力、发展社会经济、加强技术储备都具有十分重要的意义。为更好地推动我国AI4S的发展,以下两点十分关键:一是变革当代的教学与教育,倡导AI for Education和Education for AI;二是以DAOs和DeSci为基础建立适应“新科学研究范式”的“新组织方式”和“新科研生态”,为AI4S研究提供公开、公平、公正的可持续性支持。
步态识别具有对图像分辨率要求低、可远距离识别、无需受试者合作、难以隐藏或伪装等优势,在安防监控和调查取证等领域有着广阔的应用前景。然而在实际应用中,步态识别的性能常受到视角、着装、携物和遮挡等协变量的影响,其中视角变化最为普遍,并且会使行人的外观发生显著改变。因此,提高步态识别对视角的鲁棒性一直是该领域的研究热点。为了全面认识现有的跨视角步态识别方法,本文对相关研究工作进行了梳理和综述。首先,从基本概念、数据采集方式和发展历程等角度简要介绍了该领域的研究背景,在此基础上,整理并分析了基于视频的主流跨视角步态数据库;然后,从基于3维步态信息的识别方法、基于视角转换模型的识别方法、基于视角不变特征的识别方法和基于深度学习的识别方法4个方面详细介绍了跨视角步态识别方法。最后,在CASIA-B(CASIA gait database,dataset B)、OU-ISIR LP(OU-ISIR gait database,large population dataset)和OU-MVLP(OU-ISIR gait database,multi-view large population dataset)3个数据库上对该领域代表性方法的性能进行了对比分析,并指出跨视角步态识别的未来研究方向。