论述了局域均值分解(Local mean decomposition,LMD)的定义和算法。结合局域均值分解、包络分析和支持向量机(Support vector machine,SVM)的各自特点,提出了一种基于LMD包络谱和SVM的滚动轴承故障诊断方法,该方法先对滚动轴承振动信号进行分解,得到一系列的生产函数分量,然后,再对前面几个生产函数分量进行包络分析,从包络谱中提取特征幅值比作为特征向量输入到SVM分类器中进行识别。实验结果验证了提出的方法的有效性,可以有效地识别滚动轴承的不同故障。
结合局域均值分解(Local mean decomposition,LMD)方法和Wigner高阶矩谱,提出一种基于局域均值分解的Wigner高阶矩谱的机械故障诊断方法,该方法保留了LMD和Wigner高阶矩谱的所有优良性能,有效地抑制了Wigner高阶矩谱的交叉项的干扰。仿真结果表明,提出的方法优于直接Wigner高阶矩谱和Choi-Williams核滤波后的Wigner高阶矩谱。最后,将该方法应用到轴承故障诊断中,实验结果进一步验证了该方法的的有效性。
结合局域均值分解(Local mean decomposition,LMD)和盲源分离各自的特点,提出一种基于局域均值分解的欠定盲源分离方法。该方法利用LMD对观测信号进行分解,得到一系列的生产函数分量,将所得到的生产函数(Production functions,PF)分量和原观测信号组成新的观测信号。对构成的新观测信号进行白化处理和联合近似对角化,得到源信号的估计。该方法能有效解决传统的盲源分离方法要求源信号满足非高斯、平稳和相互独立的假设,且要求观测信号数多于源数的不足等问题。仿真结果表明,所提出的方法是有效的,在处理非平稳信号混合的欠定盲分离方面,比传统时频域的盲源分离方法得到了更好的分离效果。将提出的方法应用到滚动轴承的混合故障分离中,试验结果进一步验证该方法的有效性。