Biogenic silica content was determined in 25 surface sediment samples from the southern South China Sea to study its distribution and its modern oceanic environmental significance, which may provide further scientific evidence for paleoceanography explaination. This study showed that biogenic silica content in surface sediments and its water depth have evidently positive correlation, and the correlation coefficient was up to 0.782. Biogenic silica content was very low in continental shelf shallows and could not reflect the productivity of siliceous micropaleontology in surface waters, which may be affected by sedimentary types and terrigenous matter dilution. Distribution of biogenic silica content in surface sediments from deep water areas showed that it could not only reflect the paleoproductivity of siliceous micropaleontology in surface waters, but also indicate the strong or feeble upwelling. Thus, it was further confirmed that using biogenic silica content in sediments to trace upwelling and its change was effective and reliable. The analyzed result showed that radiolariia and poriferous specula have more contribution for biogenic opal, comparing with diatom in surface sediments from the northern studied area, probably owing to the diatom dissolved easily away and eaten by other organisms with little effort. In the upwelling areas, radiolarian, diatom and poriferous specula all approximately showed high abundance, which was consistent with high biogenic silica content.