为获得对In0.53Ga0.47As/In P材料在电子束辐照下的光致发光谱变化规律,开展了1 Me V电子束辐照试验,注量为5×1012—9×1014cm-2.样品选取量子阱材料和体材料,在辐照前后,进行了光致发光谱测试,得到了不同结构In0.53Ga0.47As/In P材料在1 Me V电子束辐照下的不同变化规律;对比分析了参数退化的物理机理.结果显示:试验样品的光致发光峰强度随着辐照剂量增大而显著退化.体材料最先出现快速退化,而五层量子阱在注量达到6×1014cm-2时,就已经退化至辐照前的9%.经分析认为原因有:1)电子束进入样品后,与材料晶格发生能量传递,破坏晶格完整性,致使产生的激子数量减少,光致发光强度降低;电子束辐照在材料中引入缺陷,增加了非辐射复合中心密度,导致载流子迁移率降低.2)量子阱的二维限制作用使载流子运动受限,从而能够降低载流子与非辐射复合中心的复合概率;敏感区域截面积相同条件下,体材料比量子阱材料辐射损伤更为严重.3)量子阱的层数越多,则异质结界面数越多,相应的产生的界面缺陷数量也随之增多,辐射损伤越严重.
针对卫星轨道上的空间环境辐射引起电子元器件参数退化问题,为了研究光电器件空间辐射效应、损伤机理以及参数退化规律,对某国产埋沟科学级电荷耦合器件(charge-coupled devices,CCD)进行了10 Me V质子辐照试验、退火试验及辐射效应理论模型研究.试验过程中重点考察了器件的暗信号和电荷转移效率特性的变化.试验结果表明,器件的主要性能参数随着质子辐照注量的增大明显退化,在退火过程中这些参数均有不同程度的恢复.通过对CCD敏感参数退化规律及其与器件工艺、结构的相关性进行分析,并根据半导体器件辐射效应理论,推导了器件敏感参数随质子辐照注量变化的理论模型,得到了暗信号及电荷转移效率随辐照注量退化的半经验公式.上述工作可为深入开展CCD抗辐射性能预测、抗辐射工艺改进与结构优化提供重要参考.