指关节纹比手掌特征更明显,针对这种生物特征提出一种基于Gabor-带限相位相关(Gabor-BLPOC)的指关节纹识别算法.首先,使用Gabor滤波器抑制噪声,并采用限制对比度自适应直方图均衡化对指关节纹图像进行增强;其次,使用BLPOC算法提取指关节纹图像的相位特征;然后,通过计算2幅指关节纹图像的互功率谱对指关节纹图像进行校准;最后,再次计算校准后图像的BLPOC,根据2幅图像的互功率谱峰值进行指关节纹图像的匹配.通过在Poly U FKP数据库上的实验表明,所提出算法的等错误率为1.57%,具有更加精确的匹配效果,从而验证了该算法的有效性.
提出一种二维线性大间距判别分析(Two dimensional linear maximum margin discriminant analysis,2DLMMDA)的投影算法。该算法一方面采用了有效且稳定的大间距优化准则,引入了Laplacian矩阵,保持了特征矩阵的流形结构,且优化域为Laplacian类间散度与Laplacian类内散度之差,能克服Fisher准则带来的小样本问题;另一方面,采用了具有监督信息的判别分析,大大地提高了识别率。为了验证所提出的算法对特征提取的有效性,选择最近邻分类器进行特征分类,最后通过在CASIA(B)步态库上实验。实验结果表明,文中提出的算法具有更高的识别率和识别速度。