王斌
- 作品数:53 被引量:281H指数:10
- 供职机构:复旦大学信息科学与工程学院电子工程系更多>>
- 发文基金:国家自然科学基金上海市教育委员会重点学科基金国家高技术研究发展计划更多>>
- 相关领域:自动化与计算机技术医药卫生电子电信生物学更多>>
- 基于独立元分析的脑磁图数据分析和处理(英文)
- 2005年
- 背景:诱发响应信号是由刺激的时间锁定的,对于一些特定的刺激呈现小的个人差距,脑磁图数据中诱发响应的提取对人脑功能的认识很重要。目的:将独立元分析应用于分离混迭的脑磁图多通道信号中的信号源,提出一个简单有效的基于独立元分析的脑磁图数据分析和处理方法。设计:单一样本分析。单位:复旦大学电子工程系和复旦大学脑科学研究中心。对象:实验于2002-09在日本通信综合研究所关西先端研究中心完成,选择日本东京药科大学的健康志愿者1例,男性;年龄23岁。受试者自愿参加。方法:①对脑磁图进行必要的预处理,如低通滤波和主成分分解。②采用独立元分析的方法对取自148个通道的脑磁图的数据进行分析和处理,尤其是诱发反应的提取。③对提取的各独立成分进行周期平均。主要观察指标:应用独立元分析方法对脑磁图数据分析。结果:①脑磁图信号有较高的冗余度,信号能量的绝大部分集中在前30个主成分中,从前30个主成分中抽取干扰源和诱发响应活动源。②眼动干扰源仍被清楚地检测和分离在第1个独立元中,心电干扰被分离在第20个独立元中。③α波呈现在第2,3,7和9等独立元中。波(13~30Hz)呈现在第11和第12独立元中。④诱发响应是响应于刺激的周期性波形,集中在第5独立元中。结论:利用独立元分析,可从混迭的脑磁图数据中分离这些干扰源,更进一步,消除这些干扰成分,可得到净化的脑磁图数据。借助独立元分析,有效的分离α波、β波以及眼动、眨眼等神经活动源,有可能为它们的脑神经活动研究提供新的方法和途径。利用独立元分析方法成功的进行了听觉诱发反应的分离和提取。
- 王斌王斌马洁铭
- 关键词:脑磁图描记术
- 一种基于非降采样Contourlet变换的遥感图像融合方法被引量:10
- 2008年
- 给出了一种非降采样Contourlet变换和HIS变换相结合的遥感图像融合算法.非降采样Contourlet变换是一种平移不变的小波变换方法,且具有良好的方向选择性,其对图像做多分辨率分析得到的高频子带,有效地表达了图像中的细节特征信息.结合HIS变换,非降采样Contourlet变换将细节注入到多光谱图像得到的融合图像,不但具有较高的空间分辨率,而且有效保持了多光谱图像的光谱特征.实际的SPOT全色图像和TM多光谱波段融合结果表明,所提议方法的性能优于目前广泛使用的小波域方法如离散小波变换和A Trous小波变换以及Contourlet变换等融合方法.
- 黄海东王斌张立明
- 关键词:遥感图像图像融合HIS变换
- 基于自组织映射和模糊隶属度的混合像元分解被引量:4
- 2008年
- 遥感图像中普遍存在着混合像元,将混合像元分解为端元和它们之间混合的丰度,对于高精度的地物识别和定量遥感具有重要意义.结合自组织映射神经网络和模糊理论中的模糊隶属度,提出一种新的多光谱和高光谱遥感图像混合像元分解的方法.首先对自组织映射神经网络进行有监督的训练,然后基于模糊模型对混合像元进行分解.其分解结果自动满足混合像元分解问题所要求的2个约束:丰度值非负约束及丰度值和为1约束.实验结果表明,该方法不仅适用于线性光谱混合的情况,也适用于非线性光谱混合的情况,能够获得较好的混合像元分解结果,同时具有较强的抗噪声能力.
- 刘力帆王斌张立明
- 关键词:混合像元分解端元丰度自组织映射神经网络
- 基于单形体几何的高光谱遥感图像解混算法被引量:6
- 2012年
- 提出一种新的基于单形体几何的高光谱遥感图像混合像元丰度估计算法.该算法的目标是在已知端元矩阵的基础之上,估计高光谱图像中各个观测像素点中每个端元的丰度.根据凸几何理论,基于线性混合模型的高光谱解混问题可以看成一个凸几何问题,其中端元位于包含整个高光谱数据集的单形体的顶点,而它们对应的重心坐标则可以看作各个观测像素的丰度.提出的方法由3部分组成,分别为基于单形体体积的重心坐标计算方法、距离几何约束问题和基于内点的单形体子空间定位算法.与其他基于单形体几何的算法相比,该方法具有诸多优点.Cayley-Menger矩阵的引入使得欧式空间上的运算转化为距离空间上的运算,在降低运算复杂度的同时很好地兼顾到数据集的几何结构.而且,单形体重心的使用确立了一种快速而精确的判断方法来确定观测像素所属的子空间,进而利用递归的思想得到丰度值.此外,算法核心仅仅涉及观测点与端元之间的距离,而与波段数无关.因此,该算法无须对数据执行降维处理,从而可以避免因数据降维而造成的有用信息的丢失.仿真和实际高光谱数据的实验结果表明,所提出的算法与同类其他优秀的算法如FCLS和SPU相比,具有更高的运算精度,同时在端元数目较小时具有较快的运算速度.
- 普晗晔王斌王斌
- 关键词:遥感图像处理特征提取
- 基于鲁棒估计的遥感图像融合方法
- 2013年
- 提出一种基于鲁棒估计的遥感图像融合方法.该方法首先建立了高分辨率的多光谱图像到低分辨率的多光谱图像和高分辨率的全色图像之间的观测模型,然后在最大后验概率框架下引入鲁棒估计以增强估计的鲁棒性,最后利用阶段非凸和逐次超松弛方法实现了低分辨率的多光谱图像和高分辨率的全色图像之间的融合.鲁棒估计的引入,大大减小了观测噪声对融合结果的影响,而且省去了目标函数中的正则项,使得融合过程更加简单方便.以QuickBird卫星数据为例的实验结果表明,与其他几种常见方法相比,本方法不仅能够提高多光谱图像的空间分辨率,对光谱信息的保持也具有更好的效果.
- 夏晓天王斌王斌
- 关键词:遥感图像融合最大后验概率鲁棒估计
- 基于波段聚类的高光谱图像波段选择被引量:12
- 2012年
- 为使无监督的波段选择能够更好地保留高光谱图像的信息,提出一种基于波段聚类的高光谱图像无监督波段选择方法.首先,计算高光谱图像各波段间的互信息,以此衡量各波段间的相关程度;然后,根据各波段间的互信息,对波段集合进行聚类;通过迭代使得各波段分组自动地聚集在信息量较大且具有代表性的波段周围,直到各聚类中心不再变化,则聚类结束.通过波段聚类过程保证了冗余波段的去除和有用信息的保留,最后,以各聚类中心波段作为所选的波段组合.实验结果证明,与传统方法相比,使用文中的方法选择波段,能够更有效地保留光谱信息,得到更高的分类精度.
- 葛亮王斌王斌
- 关键词:高光谱遥感图像波段选择
- 基于独立元分析和非线性指数分析的脑电信号中伪迹分量的自动去除被引量:3
- 2006年
- 脑电(electroencephalography,EEG)信号中不可避免地存在着眼动、心跳、肌电信号以及线性噪声等伪迹干扰,这些伪迹的存在极大地影响了脑电信号分析的准确性,因此在进行脑电信号分析前需要去除伪迹干扰。为了有效地去除伪迹,结合独立元分析和非线性指数分析,提出一种自动识别并去除脑电信号中伪迹分量的方法。该方法还可同时用于提取脑电信号中的基本节律如!波等。相应的模拟与实际脑电数据的实验结果表明所提议的方法具有很好的识别和去除脑电信号伪迹分量的性能。
- 卞宁艳王斌曹洋张立明
- 关键词:脑电信号独立元分析
- 基于数据空间正交基的遥感图像混合像元分解新方法被引量:3
- 2009年
- 文中提出一种新的基于数据空间正交基的多通道遥感图像混合像元分解算法.该算法通过在数据集中确定一个具有最大体积的单形体来搜索端元.与经典的单形体遥感图像端元提取算法如N-FINDR不同的是,本算法将原基于行列式的单形体体积计算,等价于一组正交基的模值乘积计算,从而大大提高了算法的计算效率;同时,由于顺序搜索概念的引入,确保了本算法总能获得相同的端元提取结果,而不同于N-FINDR的结果易受随机选取的初始值影响.此外,利用这组正交基,文中所提出的算法还可以同时完成端元个数的确定与丰度的估计两项工作.模拟与实际数据实验结果表明,文中提出的算法是一种快速准确的遥感图像混合像元分解算法.
- 陶雪涛王斌王斌
- 关键词:混合像元分解端元提取正交基
- 基于Cayley-Menger行列式的高光谱遥感图像端元提取方法被引量:2
- 2012年
- 提出了一种基于Cayley-Menger行列式的快速端元提取算法.该算法的目标是寻找包含高光谱数据集的最小体积的单形体.与其它基于单形体几何的算法相比,该方法具有诸多优点.首先,Cayley-Manger行列式的引入使得算法可以便捷地利用Hermite矩阵的特点大大加速搜索过程,进而得到一个稳定的最终解.其次,该算法无须对数据进行降维处理,从而可以避免因数据降维而造成的有用信息的丢失.仿真和实际高光谱数据的实验结果表明,所提出的算法在获得准确解的同时,具有非常快的收敛速度.
- 普晗晔王斌王斌
- 基于贝叶斯自组织映射和高斯混合模型的混合像元分解被引量:5
- 2007年
- 提出一种新的对多通道遥感图像进行混合像元分解的方法.该方法将贝叶斯自组织映射算法引入混合像元分解问题中,通过最小化Kullback-Leibler信息度实现高斯参数的估计,并结合高斯混合模型完成解混.为了获得较高的解混精度,要求适当地扩展正态分布的范围,提出了3σ的方差调整方法来解决这一问题.所采用的解混模型自动满足混合像元分解问题所要求的2个约束条件:丰度值非负约束,丰度值和为1约束.实验结果表明,该方法有较好的混合像元分解结果,同时具有较强的抗噪声能力.
- 刘力帆王斌张立明
- 关键词:高斯混合模型混合像元分解