传统的星载SAR数据海面风场反演方法是利用海面风场与雷达后向散射系数之间的经验关系即CMOD5模式函数求解海面风场.但在台风条件下,由于降雨对雷达信号的影响及高风速条件下CMOD5模式函数的停滞效应,海面风场的反演精度迅速下降.针对降雨对雷达信号的影响,本文基于星载SAR卫星平台未搭载降雨测量载荷的特点,将多时次的静止气象卫星红外云图用于推导台风云系的运动矢量,并由该运动矢量及非同步观测降雨数据估算星载SAR数据过境时的降雨强度.最后,利用订正模型和降雨强度数据进行降雨订正.针对高风速条件下CMOD5模式函数的停滞效应,本文基于台风的SAR图像特征和改进的HOLLAND台风模型,提出了台风参数估计及风场构建方案.首先,利用基于小波分析的风向提取算法提取台风风场的海面风向信息,并通过地球物理模式函数和风向信息反演海面风速.然后,根据台风眼的SAR图像特征计算台风中心位置和最大风速半径,并将其代入改进的HOLLAND台风模型.最后,利用中低风速数据通过最小二乘法拟合台风中心气压和最大风速,并将台风风向、中心位置、最大风速半径、中心气压和最大风速等参量代入改进的HOLLAND模型构建台风海面风场.为了验证方案的精度,选择台风"艾利"、"卡努"和"奥菲利娅"的星载SAR数据进行试验,并利用美国联合台风预警中心和飓风研究中心的最佳路径数据和风场数据进行精度检验.结果表明,本文利用星载SAR数据估算的台风中心位置、中心气压、最大风速与最佳路径数据基本一致,构建的海面风场精度较高,其中,海面风速的均方差为1.4 m s-1,风向的均方差为2.1°,为台风监测提供了新的技术途径.
基于高分辨率图像对比法,利用同一卫星平台上空间分辨率19.5m的CCD相机图像对CBERS-02B卫星上空间分辨率为258m的WFI成像仪图像进行在轨MTF(modulate transfer function)测量,获得WFI(wide field imager)相机沿轨、跨轨与45o方向的MTF曲线,并计算出3个方向的线扩展函数LSF(line spread function),获得3个方向的有效半带宽。结果表明WFI相机红波段跨轨、沿轨与45o方向的有效半带宽,即有效瞬时视场,分别为1.188,1.165与1.281个像元,近红外波段为1.258,1.195与1.326个像元。基于获得的MTF,利用维纳滤波法对WFI图像进行补偿,部分恢复了WFI图像的细部信息。