刘东
- 作品数:5 被引量:8H指数:2
- 供职机构:浙江工业大学材料科学与工程学院磁电功能材料研究所更多>>
- 发文基金:留学人员科技活动项目择优资助经费更多>>
- 相关领域:一般工业技术电气工程更多>>
- 碳纤维添加对低温固相反应法合成锰锌铁氧体微粉结构和性能的影响被引量:1
- 2015年
- 通过在锰锌铁氧体原料粉末中添加适量的亲水碳纤维,在900℃反应合成了不经粉碎即可使用的锰锌铁氧体微粉。利用SEM、XRD、VSM等手段观测粉体的形貌、结构、性能,确定了热处理的工艺条件,并分析了碳纤维添加量对样品磁性能的影响。结果表明,粉体粒径随碳纤维添加量的增加而增大,当碳纤维添加过量时则会损害样品的磁性能。对于本实验的铁氧体组成,碳纤维的添加为0.5wt%时所得锰锌铁氧体微粉的尖晶石相含量最高,添加量为0.64wt%时饱和磁化率Ms最高。
- 刘强陈思远车声雷刘东应耀姜力强
- 关键词:MNZN铁氧体微粉固相合成磁性能
- Fe_2O_3含量对MnZn铁氧体中Fe^(2+)量、磁性能及导电机制的影响被引量:1
- 2015年
- 通过测量MnZn铁氧体的磁性能及Fe2+、Mn3+含量,考察了MnZn铁氧体中的Fe2+含量与配方中Fe2O3、MnO含量的关系及其对MnZn铁氧体磁性能的影响,并探究了MnZn铁氧体的导电机制。结果表明:随着(Fe2O3)a(MnO)b(ZnO)c主组成配方中a值递增(52.55≤a≤53.35)、b值递减(38.33≥b≥37.52),呈现出Fe2+、Mn3+含量均增加的趋势。随着Fe2+含量增加,Pcv谷底温度向低温方向移动,Pcv(min)先减后增,Pcv(20/70/100℃)均先减后增,均在Fe2+含量=1.55%附近达到最小值;起始磁导率μi(20/70/100℃)均先增后减。根据Pcv-Fe2+含量和μi-Fe2+含量两个关系图在Fe2O3=53.15mol%附近出现极值点这一现象,初步推测铁氧体Znα2+Mnβ-x2+Mnx3+Fey2+Feχ-y3+O4+σ(0.1794≥α≥0.1786,0.754≥β≥0.734,0.0031≤x≤0.0040,0.051≤y≤0.070)的导电机制为:y<0.064时小极化子间的束缚能主导,y>0.064时电子跃迁主导。
- 孙文强朱朝辉刘东应耀姜力强车声雷
- 关键词:MNZN铁氧体电位滴定磁性能导电机制
- 正交实验法优化降温速率制备高磁导率高饱和磁通密度MnZn铁氧体研究被引量:1
- 2016年
- 采用正交实验研究了不同降温段的降温速率对MnZn铁氧体磁导率温度稳定性的影响,并在此基础上优化了降温曲线。结果表明,通过正交实验法优化降温曲线,可以制备更加均匀显微结构和较大晶粒尺寸的样品,从而成功地制备得到了高磁导率(μi)高饱和磁通密度(Bs)锰锌铁氧体材料。当降温段1350.1150℃、1150.1000℃和1000.700℃的降温速率分别为0.83℃/min、5.0℃/min和5.0℃/min时,烧结的MnZn铁氧体具有均匀的微观结构和优良的磁性能。此时,烧结体在0.190℃温度区间和应用频率f≤530kHz时保持高磁导率(μi>5000),同时在常温下具有高的饱和磁通密度Bs=530mT。
- 巩玉钊应耀刘东余靓车声雷姜力强
- 关键词:MNZN铁氧体正交实验磁性能
- 功耗测试过程中功率铁氧体磁芯的温升及其影响因素被引量:2
- 2015年
- 对软磁材料的设计和应用来说,磁性参数测试的精确性至关重要。软磁材料测试条件各异,加上材料磁特性的非线性、不可逆性及对温度的敏感性,使得磁参数测试存在一定的偏差。选取适用频率范围较宽的功率铁氧体PC50磁环样品,通过对不同频率f及磁感强度Bm下的损耗测试过程中样品的温升进行监测,考查了磁芯损耗测量过程中不同励磁条件对样品温升的影响。结果分析发现,温升与测试时间、励磁信号的强度和频率呈正相关;根据损耗分离公式通过最小二乘拟合得出其函数关系式。拟合结果与实测数据对比表明该拟合方法可行,由此可估测任意测试条件下的样品温升,在测试前对可能因此引起的误差作出初步判断。
- 陈霞萍车声雷刘东应耀姜力强
- 关键词:软磁材料功率损耗温升
- 高饱和磁通密度锰锌铁氧体材料研究动态被引量:4
- 2016年
- 高饱和磁通密度锰锌铁氧体在清洁能源、LED照明、混合动力及电动汽车等新兴市场有重要的应用前景。要满足不断发展的市场要求,高饱和磁通密度锰锌铁氧体必须在保持高饱和磁通密度(Bs)之外、同时具有较低的损耗(Pcv)和较好的温度稳定性。目前,商业化的材料主要关注的是Bs(100℃)为450m T左右的材料,而实验室内则对Bs(100℃)大于500m T的材料进行了较多的研究。要提高Bs,主要通过增加材料中Fe2O3的含量和提高材料的密度,在这个方面现在的很多研究已经可以实现。要将Bs(100℃)大于500m T的材料大批量生产,主要的问题是降低损耗。降低损耗一般通过添加杂质和控制烧成工艺实现,此外还应考虑原材料的粒度、比表面积等粉体特性和造粒工艺。在保证Bs(100℃)的基础上改善材料的温度稳定性主要是引入Ni O等实现的。
- 刘东车声雷
- 关键词:锰锌铁氧体饱和磁通密度温度稳定性烧成工艺