空调负荷预测对于优化空调系统运行具有重要指导价值,本文针对传统神经网络在预测空调负荷时精度较低、泛化能力弱和物理意义不明晰的缺点,建立了模糊C均值算法(Fuzzy C-means)优化的BP神经网络复合模型。模型先采用FCM算法对输入参数进行聚类,针对不同类建立BP神经网络预测模型,将待测样本分类后进行预测,最后使用决策树算法筛选预测结果中聚类不佳的部分进行加权优化。以珠海某办公楼空调系统实际运行数据为例验证了模型,结果显示随机负荷样本预测的精度指标即标准差率(Coefficient of Variance)为0.191相较于不聚类神经网络提高了51.4%;典型工作日、休息日日均负荷样本预测标准差率为0.08和0.14相对于不聚类神经网络则分别提高了73.0%和39.7%。