球床式氟盐冷却高温堆(Pebble Bed Fluoride-salt Cooled High Temperature Reactor,PB-FHR)是一种先进的第四代反应堆。三维堆芯热工水力程序能够模拟具有复杂空间效应的工况,但计算耗时较高。图形处理器(Graphics Processing Unit,GPU)具有大量计算单元,可有效提高程序的计算速度。本文研发了GPU加速的PB-FHR堆芯热工水力程序(GPU-accelerated Thermal Hydraulic Code,GATH),采用非热平衡多孔介质模型建立堆芯物理模型,研究并实现了GPU高速求解算法。对PB-FHR的堆芯模型进行了热工水力分析,与商用计算流体力学软件ANSYS CFX的计算结果进行了对比,验证了程序的正确性。GPU加速性能分析的结果表明,程序整体的加速比率可达8.39倍,证明所研发的GPU求解算法能有效提升堆芯热工水力分析的计算效率。
反应堆主屏蔽是核反应堆的重要组成部分,用来有效降低反应堆运行时屏蔽体外的辐射剂量水平,以满足反应堆部件材料对辐射限制的要求。温度是影响反应堆主屏蔽性能的重要因素。针对2 MWth液态熔盐堆(2-MW liquid-fueled molten salt experimental reactor,TMSR-LF1),采用MCNP软件获得功率分布后,利用Fluent软件对主屏蔽进行温度场计算。计算过程中利用Python语言编写了程序(MCNP to Fluent,MTF)来实现将MCNP(Monte Carlo N Particle Transport Code)计算结果转换为功率密度的空间分布,以用户自定义函数(User-Defined Function,UDF)形式导入到Fluent,解决了MCNP计算结果不能直接导入到Fluent的问题,并分别计算了TMSR-LF1熔盐堆不同环境温度下的主屏蔽温度场分布情况。结果表明,在环境温度为5°C、18°C、25°C、30°C、35°C、40°C情况下,TMSR-LF1熔盐堆主屏蔽普通混凝土墙温度均低于要求限值,达到设计要求。