2024年12月20日
星期五
|
欢迎来到维普•公共文化服务平台
登录
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
王爱文
作品数:
1
被引量:5
H指数:1
供职机构:
武汉科技大学信息科学与工程学院
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
宋玉阶
武汉科技大学信息科学与工程学院
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
神经网
1篇
神经网络
1篇
图像
1篇
图像分割
1篇
耦合神经网络
1篇
网络
1篇
脉冲耦合
1篇
脉冲耦合神经...
1篇
灰度
机构
1篇
武汉科技大学
作者
1篇
宋玉阶
1篇
王爱文
传媒
1篇
计算机科学
年份
1篇
2017
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
基于脉冲耦合神经网络的图像分割
被引量:5
2017年
针对传统脉冲耦合神经网络(PCNN)模型在图像分割时需要设置较多参数和不能准确分割低对比度图像的问题,提出一种简化的PCNN模型和改进算法。在简化模型中减少了在传统PCNN模型中需要设置的参数的数量;在改进算法中根据图像像素空间和灰度特征自适应设置模型参数,并根据图像灰度直方图求出灰度期望均值作为图像分割阈值,因此该算法无需选择循环迭代次数,只需一次点火过程就能实现图像的有效分割。实验结果表明,该方法能准确分割图像,纹理细节清晰,分割结果优于人工调整参数的PCNN方法和Otsu方法。
王爱文
宋玉阶
关键词:
脉冲耦合神经网络
图像分割
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张