土壤水分是控制陆地和大气间水热能量交换的关键因子之一,在地球生态系统中起着重要的作用。定量化获取土壤水分信息对农业生产、应对全球变化、保护生态环境等众多领域都有着重要意义。目前,获取精度较高的大区域土壤湿度信息依然是研究的热点和难点问题。气候变化倡议项目(climate change initiative,CCI)土壤湿度数据集是由多种主、被动微波数据融合的大尺度土壤湿度数据集,对其在中国区域的数据质量改进具有较高的实际应用价值。研究利用累积概率分布函数(cumulative distribution function,CDF)匹配方法对CCI土壤湿度产品进行改进。选择有较多实测数据的河北、山西、天津等部分区域,获得2009-2010年每月三旬(共72旬)的土壤湿度插值数据,以此为基础利用CDF进行重调整,建立逐像元的CCI土壤湿度数据的改进模型;然后利用站点实测数据进行该方法的有效性验证。结果表明,CDF调整前的偏差、均方根偏差和平均相对误差分别集中在0.05-0.09、0.05-0.1、0.20-0.45,调整后分别降低在0-0.04、0-0.05、0-0.2范围。可见,CDF调整后的误差明显减小,调整后的CCI土壤湿度的精度得到了明显的提高。