在光学相机远距离拍摄图像时,由于光线衰减和环境噪声的影响,图像容易变得模糊且难以清晰识别。为应对这一挑战,提出了一种基于权重注意力和密集残差连接的图像超分算法(image super-resolution algorithm based on weighted attention and dense residual connections, WADRNet)。首先,在网络的浅层特征提取阶段,提出一种非对称卷积模块,以替代传统的卷积模块,提高了模型的信息提取能力,尤其是对边缘和纹理等关键特征的提取;其次,采用密集残差结构,在不增加额外计算量的同时实现跨层特征传递和信息的有效利用,增强了模型的上下文特征提取能力,更好地还原图像;最后,在窗口注意力模块融入权重通道注意力模块,有效地利用全局感受野特性。实验结果表明,WADRNet在自制数据集上明显领先于其他模型,尤其在峰值信噪比和结构相似性等方面;同时,该模型在公开数据集上也表现出良好的效果。因此,该方法能够显著提升低分辨图像像素质量,在工程领域具有广泛的应用潜力和价值,尤其适用于需要远距离成像的应用场景。