为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。