您的位置: 专家智库 > >

张同钢

作品数:12 被引量:28H指数:3
供职机构:青岛理工大学机械工程学院更多>>
发文基金:国家自然科学基金山东省自然科学基金更多>>
相关领域:机械工程金属学及工艺更多>>

文献类型

  • 12篇中文期刊文章

领域

  • 11篇机械工程
  • 2篇金属学及工艺

主题

  • 12篇润滑
  • 9篇弹流
  • 6篇轴承
  • 5篇弹流润滑
  • 5篇弹性流体
  • 5篇弹性流体动力
  • 5篇弹性流体动力...
  • 5篇动静压
  • 5篇动力润滑
  • 5篇水润滑
  • 5篇热弹流
  • 5篇流体动力
  • 5篇流体动力润滑
  • 5篇轮齿
  • 5篇静压
  • 5篇齿轮
  • 5篇齿轮齿条
  • 5篇齿条
  • 4篇润滑分析
  • 3篇动静压滑动轴...

机构

  • 12篇青岛理工大学

作者

  • 12篇王优强
  • 12篇徐彩红
  • 12篇张同钢
  • 12篇王立梅
  • 1篇王涛

传媒

  • 5篇机械传动
  • 5篇表面技术
  • 2篇润滑与密封

年份

  • 2篇2018
  • 10篇2017
12 条 记 录,以下是 1-10
排序方式:
水润滑动静压滑动轴承的临界温度研究
2017年
建立水润滑动静压滑动轴承的弹流润滑几何模型,采用考虑热效应的Reynolds方程,对水润滑动静压滑动轴承进行弹流理论分析,计算一定供水压力下当润滑剂局部最高温度达到临界值时不同的速度、载荷极限值;分析润滑介质、轴瓦材料以及供水压力变化对速度、载荷达到极限值时的临界温度曲线的影响,得到润滑剂局部最高温度达到临界温度时的轴承速度和载荷极限值的临界温度曲线,并通过拟合得到曲线的函数表达式。研究结果显示:海水润滑下的临界温度曲线高于纯水润滑,塑料轴瓦的临界温度曲线高于陶瓷轴瓦;供水压力对不同轴瓦材料的临界温度曲线变化趋势影响不同,对不同润滑介质的临界温度曲线的变化范围影响不同。
张同钢王优强王立梅徐彩红
关键词:水润滑动静压轴承弹流润滑临界温度
不同衬套材料对油水两相润滑轧机油膜轴承弹流润滑的影响被引量:2
2017年
以轧机油膜轴承为研究对象,利用考虑热效应的Relnolds方程建立了油水两相弹流润滑模型,对比了3种常用衬套材料对轧机油膜轴承润滑性能的影响,结合轧机油膜轴承的特殊工况讨论了不同含水量、主轴转速和轧制力下的油水两相流体的润滑特性。结果表明:3种衬套材料中,巴氏合金的最大压力及中心压力最小,整体膜厚、中心膜厚及最小膜厚值最大,润滑性能最好,最大温度最大,散热性最好,选用巴氏合金作为衬套材料最为合适;油膜进水后随着含水量的增加,最大压力减小,润滑膜入口区的压力增大,最小膜厚增大,润滑性能提升;随着主轴转速增加,润滑膜最大压力减小,入口区压力增大,最小膜厚增加;随着轧制力的增加,最大压力增大,入口区压力减小,最小膜厚减小。
王优强王涛徐彩红王立梅张同钢
关键词:轧机油膜轴承油水两相流弹流润滑
齿轮齿条传动往复运动过程的润滑分析被引量:3
2017年
目的通过对往复运动齿轮齿条传动过程中压力、膜厚、温度的计算,获得往复运动齿轮齿条的润滑状况,为机构的设计提供理论依据。方法将齿轮齿条的传动模型简化为圆柱与无限大平面之间的运动,建立往复运动齿轮齿条传动的热弹流润滑模型。采用Ree-Eyring流体,压力求解采用多重网格法,弹性变形采用多重网格积分法,计算得到齿轮齿条往复运动过程中的中心压力、中心膜厚、最小膜厚和最高温度,并与单向运动情况比较。结果与单向运动相比,往复运动由于在换向过程中存在加速、减速过程,降低了齿轮齿条机构在啮合周期内润滑油膜厚度,啮合线上变速过程始末附近区域膜厚和压力都会产生一定程度的波动。换向瞬时,受挤压效应的影响,产生油膜凹陷,油膜变薄,润滑状态变差。结论在计算往复运动齿轮齿条润滑油膜与压力时,存在换向的啮合周期需要着重讨论。在工程实际中设计往复运动齿轮齿条润滑时,应着重考虑单双齿啮合转换点与换向点处的润滑情况。
徐彩红王优强王立梅张同钢
关键词:齿轮齿条弹性流体动力润滑热效应
环境温度变化对水润滑动静压轴承的热弹流影响被引量:8
2017年
目的研究不同季节或地域以及外部降温对水润滑动静压轴承热弹流的影响。方法选取小孔式水润滑动静压滑动轴承为研究对象,采用考虑了热效应的Reynolds方程对水润滑动静压滑动轴承进行热弹流润滑分析,研究了不同温度边界条件下三种轴瓦材料的水润滑动静压滑动轴承润滑膜的温度变化及其压力膜厚的变化。结果当轴瓦、轴颈的温度相同且异于润滑剂初始温度(313 K)时,轴瓦、轴颈温度越低,润滑膜的温度越低,在入口区和出口区出现明显的温度变化,轴瓦、轴颈温度越低,润滑膜的膜厚越大,第二压力峰越明显。轴承外部降温,使轴瓦温度(297.35、281.7 K)保持低于润滑膜以及轴颈的初始温度(313K),轴瓦温度越低,润滑膜的温度越低,入口区以及出口区的温度也发生变化,润滑膜的膜厚增大,第二压力峰增大。对比轴瓦、轴颈温度同时降低和轴瓦温度降低这两种工况,润滑剂温度的变化趋势与压力膜厚的变化趋势相同,但变化幅度不同。结论由于轴承所处季节或地域不同,轴瓦、轴颈的温度异于润滑剂初始温度,外部环境温度越低,润滑膜的膜厚越大,有利于润滑。通过外部降温的形式使轴瓦保持低温状态,同样可以使润滑膜的膜厚增大,有利于润滑。
张同钢王优强徐彩红王立梅
关键词:水润滑动静压轴瓦材料环境温度热弹流
水润滑动静压陶瓷轴承的热弹流润滑分析被引量:3
2017年
建立了水润滑动静压陶瓷轴承的弹流润滑几何模型,采用考虑了热效应的Reynolds方程,对水润滑动静压陶瓷轴承进行考虑热效应时的弹流理论分析。研究了不同工况下供水压力对水润滑动静压陶瓷轴承的压力膜厚影响,分析了不同工况下润滑膜局部最高温度出现的区域,得到了速度、载荷对水润滑动静压陶瓷轴承润滑膜温度控制的协同作用曲线。结果显示,初始供水压力的静压效应有利于轴承润滑,初始供水压力增大,润滑膜膜厚增大,不同工况下压力变化趋势不同;不同工况下,润滑膜局部最高温度的区域发生变化;当润滑膜局部最高温度保持在一个定值时,不同的速度和载荷组合对润滑膜局部温度控制呈现反相关的协同作用,并且在不同工况下,速度、载荷的相关性变化趋势不同。
张同钢王优强徐彩红王立梅
关键词:水润滑动静压陶瓷轴承热弹流
波动供给压力对水润滑动静压滑动轴承的弹流润滑影响被引量:3
2017年
建立了水润滑动静压滑动轴承数学模型,考虑了由于节流装置的不稳定性而导致的供给压力波动的影响,对水润滑动静压滑动轴承进行弹流润滑研究。比较了不同形式波动供给压力对水润滑动静压滑动轴承压力及膜厚的影响,分析了波动供给压力下转速和载荷对弹流润滑的影响,得到了不同工况下压力波动的控制依据。结果表明,供给压力的波动趋势与膜厚变化趋势相同,与润滑膜压力变化趋势相反,压力波动不利于轴承润滑;较大的卷吸速度和较小的载荷有利于缓解由供给压力波动对润滑造成的危害;近似地得到了不同工况下控制供给压力波动范围的依据。
张同钢王优强徐彩红王立梅
关键词:水润滑动静压轴承
表面形貌对砂轮磨削流体压力与润滑的影响被引量:1
2017年
目的从磨削液压力及润滑方面找到减少磨粒磨损、磨削热和降低工件表面粗糙度的方法。方法基于实际情况,将砂轮突出的磨粒分布函数和工件在磨削之前存在的粗糙度函数等效为余弦函数,对陶瓷结合剂CBN砂轮磨削45号钢而产生的流体压力和膜厚进行了分析。结果考虑砂轮和工件的表面粗糙度时,压力波动集中在中心区域,磨削区最大压力和最大膜厚明显增大。在考虑热效应的情况下,当两表面波长相等、幅值同时增大时,最大膜厚及平均膜厚增大,而幅值相等、波长增大时,润滑情况没有改善;当砂轮表面幅值波长相等且变大时,最大膜厚及平均膜厚增大,由此也可以得出当砂轮表面幅值波长不变,工件表面如此变化时结果相同;当两表面幅值和波长不相等且都成倍增大时,最大膜厚及平均膜厚增大。结论膜厚增大利于润滑时,能降低磨削温度,减少磨削烧伤和热变形,降低工件磨削后的表面粗糙度,减少非工作磨粒的磨损,减少砂轮修正次数,延长砂轮寿命。但是膜厚不会无限增大,因为磨削区域并不封闭,在实际工程中可依据此理论来确定最优解,优化磨削过程。
王立梅王优强张同钢徐彩红
关键词:多重网格法砂轮磨削流体压力润滑表面粗糙度
变位齿轮齿条传动的热弹流润滑分析被引量:1
2017年
建立了齿轮齿条传动的热弹流润滑模型,考虑齿轮热效应和正负变位齿轮沿啮合线在不同啮合点的综合曲率半径变化、卷吸速度的变化和单双齿啮合引起的载荷变化,分析齿轮齿条传动机构在不同瞬时、载荷随时间变化的非稳态弹流润滑数值解。讨论了变位系数对齿轮齿条弹流润滑油膜压力和膜厚的影响并分析了正变位和负变位对中心膜厚和最小膜厚的影响规律。结果表明,正变位可以降低油膜压力,增加膜厚,改善齿轮齿条机构的润滑状态;负变位使油膜压力升高,膜厚变薄。因此,设计齿轮齿条传动机构时,在符合要求的前提下,应尽量选择正变位齿轮,避免选择负变位齿轮。
徐彩红王优强张同钢王立梅
关键词:齿轮齿条弹性流体动力润滑热效应
不同粗糙纹理对齿轮齿条热弹流润滑的影响被引量:3
2017年
将齿轮齿条的传动模型简化为圆柱与无限大平面之间的运动,建立考虑齿轮和齿条齿面粗糙纹理影响的齿轮齿条传动的热弹流润滑模型。采用牛顿流体,压力求解采用多重网格法,弹性变形采用多重网格积分法,计算得到不同粗糙纹理下的压力与膜厚,并与光滑表面进行比较,同时比较考虑热效应与等温情况下的压力与膜厚。计算结果表明:受粗糙纹理的影响,齿轮齿条传动机构的压力、膜厚和温升出现波动,最小膜厚变薄;矩形和三角形粗糙纹理表面粗糙峰和粗糙谷内都会形成局部的弹流现象,产生局部压力峰;考虑热效应时粗糙纹理表面的温升呈现波动,而压力和膜厚的波动幅度更大,考虑热效应的齿轮齿条传动机构的弹流润滑分析更符合工程实际。
徐彩红王优强张同钢王立梅
关键词:齿轮齿条弹性流体动力润滑膜厚
载荷时变对齿轮齿条弹流润滑的影响被引量:3
2017年
目的通过对传动过程中压力和膜厚的计算,提高齿轮齿条机构润滑性能,降低齿轮齿条传动过程中的磨损。方法简化齿轮齿条传动过程载荷图谱,运用简化的实际载荷曲线,建立齿轮齿条啮合过程的弹流润滑计算模型,对齿轮齿条啮合过程中的瞬态弹流润滑问题进行研究。考虑啮合过程中单、双齿啮合时不同的载荷,计算一个啮合周期沿啮合线上的中心压力、中心膜厚、最大压力、最小膜厚以及啮入点、节点、啮出点压力和膜厚,还有双齿啮合区转换为单齿啮合区、单齿啮合区转换为双齿啮合区前后瞬时的压力和膜厚。压力求解采用多重网格法,弹性变形采用多重网格积分法,得到了齿轮齿条传动机构的瞬态弹流润滑完全数值解。结果载荷突然升高引起中心压力突然升高,中心膜厚最大值出现在双齿啮合区与单齿啮合的临界点。啮合线上最小膜厚和最大压力出现了波动。计算得出啮入瞬时膜厚最薄,润滑状况较差。结论沿啮合线各瞬时压力与膜厚不断变化,载荷突变引起的压力突变应通过提高轮齿强度等方式防止表面疲劳破坏的产生。整个啮合过程中,啮入点为危险点。
徐彩红王优强张同钢王立梅
关键词:齿轮齿条弹性流体动力润滑膜厚
共2页<12>
聚类工具0