王文
- 作品数:5 被引量:10H指数:2
- 供职机构:解放军理工大学更多>>
- 发文基金:国家自然科学基金江苏省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 利用增广拉格朗日乘子的鲁棒跟踪算子被引量:1
- 2015年
- 针对视频目标鲁棒跟踪问题,提出了一种基于稀疏表示的生成式算法。首先提取特征构建目标和背景模板,并利用随机抽样获得足够多的候选目标状态;然后利用多任务反向稀疏表示算法得到稀疏系数矢量构造相似度测量图,这里引入了增广拉格朗日乘子(ALM)算法解决L1-min难题;最后从相似度图中使用加性池运算提取判别信息选择与目标模板相似度最高并与背景模板相似度最小的候选目标状态作为跟踪结果,该算法是在贝叶斯滤波框架下实现的。为了适应跟踪过程中目标外观由于光照变化、遮挡、复杂背景以及运动模糊等场景引起的变化,制定了简单却有效的更新机制,对目标和背景模板进行更新。对仿真结果的定性和定量评估均表明与其他跟踪算法相比,所提算法的跟踪准确性和稳定性有了一定的提高,能有效地解决光照和尺度变化、遮挡、复杂背景等场景的跟踪难题。
- 李飞彬曹铁勇黄辉王文
- 关键词:目标跟踪
- 利用稀疏协同模型的目标跟踪算法被引量:2
- 2016年
- 针对增强视频目标跟踪鲁棒性难题,提出一种利用稀疏协同判别模型和生成模型的跟踪算法.在判别模型中,利用先验视觉知识训练一个基于SIFT特征的过完备字典,用于构建目标外观模型和训练分类器实现目标与背景的分离;在生成模型中,提取目标的局部特征以及计算目标的遮挡信息来构建目标模板,通过计算候选目标与目标模板的相似度实现对目标的跟踪;最终利用乘性策略融合2种模型的跟踪结果.定性和定量的实验结果表明,与经典跟踪算法相比,该算法具有较好的鲁棒性.
- 李飞彬曹铁勇宋智军查绎王文
- 关键词:目标跟踪