张兰
- 作品数:2 被引量:5H指数:2
- 供职机构:西安交通大学电子与信息工程学院更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金更多>>
- 相关领域:电子电信更多>>
- 方向提升小波变换域稀疏滤波的自然图像贝叶斯压缩感知被引量:2
- 2014年
- 针对压缩感知(CS)重构算法在实际应用中自然图像的小波变换系数往往无法稀疏的问题,提出了一种方向提升小波变换(DLWT)域稀疏滤波的自然图像贝叶斯压缩感知算法(DLWT-SFTSW-BCS)。首先对自然图像进行方向提升小波变换得到小波变换系数;然后在随机测量之前利用稀疏滤波切除小系数,消除了小系数对大系数重构时的混叠干扰;最后结合小波树结构的贝叶斯压缩感知重构算法得到自然图像的重构图像。实验结果表明,与仅利用尺度间相关性的小波树结构的压缩感知重构算法相比,DLWT-SF-TSW-BCS算法的重构峰值信噪比最大可提高10dB。
- 侯兴松张兰
- 关键词:图像压缩感知贝叶斯混叠
- 合成孔径雷达图像的贝叶斯压缩感知重构算法被引量:3
- 2013年
- 针对目前合成孔径雷达(SAR)图像压缩感知重构算法没有充分利用小波系数相关性的缺点,提出了一种综合利用尺度间衰减性和尺度内方向能量聚集性的SAR图像贝叶斯压缩感知重构算法(DLWT-TDC)。首先采用方向提升小波变换(DLWT)对SAR图像进行稀疏表示,然后在3个高频子带中分别使用3×5、5×3、5×5邻域设计了具有方向和空间局部自适应的先验概率分布模型,最后利用马尔科夫链蒙特卡罗采样的贝叶斯推理恢复出图像的小波系数,进而得到重构图像。实验结果表明,DLWT-TDC算法在采样率为50%~90%下可以提高图像的重构性能,与仅利用尺度间相关性的小波树结构的压缩感知重构算法相比,在90%高采样率下的重构性能可提高3dB左右。
- 侯兴松张兰肖琳
- 关键词:合成孔径雷达贝叶斯推理压缩感知