陈俊岭
- 作品数:6 被引量:48H指数:3
- 供职机构:燕山大学信息科学与工程学院更多>>
- 发文基金:河北省自然科学基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 先验采样约束结合扩展遮挡字典的细化稀疏人脸识别技术研究被引量:1
- 2015年
- 为解决可能存在遮挡环境下的模式识别问题,提出先验采样约束结合扩展遮挡字典的细化稀疏人脸识别算法。针对训练样本无法包含测试样本遮挡变化的情况,首先需要构造遮挡字典(墨镜、围巾等),进而利用先验局部采样子模块稀疏表示分类方法判断测试样本可能存在的遮挡模式;然后对未被遮挡的局部子模块利用Borda计数投票,依据每类残差大小分配给不同的票数,计算样本类别信息;其次根据遮挡模式结果,利用全局稀疏表示通过构造样本遮挡扩展字典对测试样本进行全局分类投票;最后将两次分类投票结果进行融合,最终实现是否存在遮挡环境下的精细模式判别。实验结果表明,本文算法不仅能够给出准确的模式类别,还能给出遮挡类别信息,可得到精细化识别结果。
- 胡正平陈俊岭王宁赵淑欢
- 卷积神经网络分类模型在模式识别中的新进展被引量:31
- 2015年
- 近年来,深度学习作为机器学习的新兴研究领域越来越受到人们的关注,通过深度学习构建的深度网络在无监督特征提取方面表现出优异性能。卷积神经网络作为一个相对成功的深度学习模型,逐渐成为模式识别领域的研究热点。本文对卷积神经网络及其近年来在模式识别领域取得的新进展进行综述。首先介绍深度学习与卷积神经网络之间的关系以及卷积神经网络的基本原理;其次对卷积神经网络的各种改进算法进行了总结,对卷积神经网络在模式识别领域的新应用进行了概述;最后阐述了目前在卷积神经网络学习理论中亟需解决的主要问题。
- 胡正平陈俊岭王蒙赵淑欢
- 关键词:卷积神经网络模式识别
- 深层融合对称子空间学习稀疏特征提取模型被引量:3
- 2017年
- 提出深层融合对称子空间学习稀疏特征提取模型.在深度子空间基础上,引入对称性、稀疏性约束,通过构建深层映射网络,完成深层特征提取.首先根据最小化重构误差准则构建基本子空间模型,并在构建过程中加入对称性、稀疏性约束.然后对基本子空间模型进行深度化改造,得到深层对称稀疏子空间模型.最后将各个层特征进行融合编码,得到深层特征提取结果.在人脸数据库及目标数据库上的实验表明,文中算法可以取得较高识别率及较好光照、表情、人脸朝向的鲁棒性.相比卷积神经网络等深度学习框架,文中算法具有结构简洁、收敛速度快等优点.
- 胡正平陈俊岭王蒙孙哲
- 深层融合度量子空间学习稀疏特征提取算法被引量:3
- 2017年
- 特征提取作为模式识别中的重要步骤,一直是图像处理研究的重点,逐渐兴起的深度学习理论,作为一种新的深层特征提取模型,越来越受到广大学者的关注。本文提出一种基于深层融合度量学习的稀疏特征提取算法,在深度学习的框架内,构建度量映射矩阵,对图像进行分层映射,最大化保留样本集类间区分信息,并且通过稀疏迭代来保证特征提取结果的稀疏性。首先构建图像集距离度量函数,然后通过求解最大化类间距离来确定最优度量映射矩阵,同时对特征映射结果进行L1范数稀疏迭代,提高噪声鲁棒性。然后对这个基本特征提取单元进行深度化改造,在第二层中进行同样操作,最终通过多层融合提取得到分层深度稀疏特征。相对于已有子空间方法,本文在特征映射过程中引入度量自学习机制,并着重对各个特征映射层进行视觉合理性稀疏约束,融合多层特征语义描述生成最终特征提取结果。在FERET、AR、Yale等经典人脸数据库以及MNIST、CIFAR-10等目标数据库上的实验结果表明,该算法可以取得较高的识别率以及较好的光照、表情、人脸朝向鲁棒性,并且相对于卷积神经网络等深度学习框架具有结构简洁、收敛速度快等优点。
- 胡正平陈俊岭王蒙孙哲
- 多层融合深度局部PCA子空间稀疏优化特征提取模型被引量:10
- 2017年
- 子空间方法是主要利用全局信息的经典模式识别方法,随着深度学习思想的引入,局部自学习结构特征模型得到大家的关注.利用深度学习原理,本文提出一种多层融合的深度局部子空间稀疏优化特征自学习抽取模型解决目标识别问题.首先,对训练样本集通过最小化重构误差得到第一层的主成分(Principal Component Analysis,PCA)特征映射矩阵;然后,通过L1范数约束对特征映射结果进行稀疏优化,提高算法鲁棒性.接着,在第二层映射层以第一层的特征输出为输入,进行同样的特征矩阵学习操作,最终将图像映射至深层PCA子空间;然后,对各个映射层的特征提取结果进行加权融合,进行二值化哈希编码和直方图分块编码,提取图像的深度子空间稀疏特征.在FERET、AR、Yale等经典人脸数据库以及MNIST、CIFAR-10等目标数据库上的实验结果表明,该算法可以取得较高的识别率以及较好的光照、表情、人脸朝向鲁棒性,并且相对于卷积神经网络等深度学习框架具有结构简洁、收敛速度快等优点.
- 胡正平陈俊岭
- 关键词:子空间
- 先验采样约束结合扩展遮挡字典的细化稀疏人脸识别技术研究
- 为解决可能存在遮挡环境下的模式识别问题,提出先验采样约束结合扩展遮挡字典的细化稀疏人脸识别算法.针对训练样本无法包含测试样本遮挡变化的情况,首先需要构造遮挡字典(墨镜、围巾等),进而利用先验局部采样子模块稀疏表示分类方法...
- 胡正平陈俊岭王宁赵淑欢
- 关键词:人脸识别
- 文献传递