徐德荣
- 作品数:3 被引量:20H指数:2
- 供职机构:江南大学数字媒体学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于重叠稀疏组深度信念网络的图像识别被引量:2
- 2018年
- 深度信念网络的隐含神经元大部分为噪声变量,且具有组结构相关性。组稀疏深度信念网络模型通过组Lasso模型对隐含神经元变量进行约束,从而实现变量组选择。然而,组稀疏深度信念网络模型未能考虑特征可同时属于多个特征组,并且隐含神经元在变量层面上不稀疏的问题。在组稀疏深度信念网络模型上引入重叠组结构,解释了重叠组Lasso模型在变量层面上比组Lasso模型稀疏的原因,并在变量层面上作进一步的稀疏,提出了重叠稀疏组深度信念网络模型。在MNIST、USPS、ETH-80以及人脸数据集上的识别结果表明,重叠稀疏组深度信念网络具有更高的识别率。
- 田进陈秀宏傅俊鹏徐德荣
- 基于类编码的判别特征学习
- 2018年
- 经典的自编码模型(BAE、SAE、DAE、CAE)都是基于输出数据对原始数据的重构,提取输入信息的低维度特征,将该特征用于图像分类不一定能够取得很好的判别效果。利用标签信息,提出了堆叠判别自编码模型(SDcAE),该模型将类编码作为隐层神经元约束加入到堆叠自编码器的训练中,使得隐层学习的特征具有更好的判别能力。同时,将类编码作为判别损失加入到Softmax分类器中,提出了类编码分类器(CEC)。由于类间样本特征误差的降低,该分类器可以取得更好的训练效果,从而提高了最终分类的正确率。实验表明,堆叠判别自编码器和类编码分类器在图像分类中是有效可行的。
- 徐德荣陈秀宏田进
- 关键词:图像分类
- 稀疏自编码和Softmax回归的快速高效特征学习被引量:18
- 2017年
- 针对特征学习效果与时间平衡问题,提出了一种快速高效的特征学习方法。将稀疏自编码和Softmax回归组合成一个新的特征提取模型,在提取原始图像潜在信息的基础上,利用多分类器返回值可以反映输入信息的相似程度的特点,快速高效的学习利于分类的特征向量。鉴于标签信息已知,该算法在图像分类效果上明显优于几种典型的特征学习方法。为了使所提算法具有更好的泛化能力,回归模型的损失函数中加入了L2范数防止过拟合,同时,采用随机梯度下降的方法得到模型的最优参数。在4个标准数据集上的测试结果表明该算法是有效可行的。
- 徐德荣陈秀宏田进
- 关键词:图像分类