为了解决目前的关键蛋白质预测方法对生物功能的分析不够深入的情况,利用蛋白质复合物信息,提出1种基于随机游走模型,结合蛋白质相互作用网络中的边聚集系数等数据来预测关键蛋白质的RWP(random walk method for predicting essential proteins)算法。在酿酒酵母(Saccharomyces cerevisiae)蛋白质相互作用网络上,以敏感度、特异性、阳性预测值、阴性预测值、准确率等5个统计学指标为评价标准,将RWP与介数中心性、度中心性、信息中心性、CSC算法及LIDC算法等5种用于预测关键蛋白质的方法进行对比实验。结果表明:RWP在关键蛋白质识别率等方面优于这5种测度方法,它具有较好的预测关键蛋白质的性能。