智能分布式馈线自动化(feeder automation,FA)与主站集中式FA协同控制能够实现故障的最优处理。在协同控制下,馈线侧拓扑来源于配电终端的自动识别,主站侧拓扑由地理信息系统(geographic information system,GIS)或生产管理系统(production management,system,PMS)通过增量导入,存在连通混乱,与实际的拓扑运行方式不一致等问题。为实现基于智能分布式FA与主站后备的故障隔离和非故障区域恢复供电技术,促使拓扑模型统一,提出了在静态拓扑或者拓扑运行方式发生变化的情况下,由主控智能配电终端启动拓扑查询功能并生成馈线拓扑文件。进而将该模型文件上传至配电自动化主站,对主站侧的静态拓扑模型和动态拓扑模型进行校核,实现了对主站侧拓扑模型的纠正。同时通过实验验证了该校核方案的可行性,完全满足配电网的要求。
随着配电网对设备之间的同步性要求日益增高,IEEE1588精确时间协议(precision time protocol,PTP)以及网络时间协议(network time protocol,NTP)等定时协议要求对客户和服务器之间的通信路径延迟进行精确的测量,从而实现时间的精确同步。客户现场的精确时间估算是基于一种假设,即网络的物理传播时间的前向和后向时延是相等的,或者说它们之间的差异之前就已进行了相应的校准的。除了物理链路的延迟,通道上的交换/路由设备将引起定时分组排队时延。然而,该队列时延通常在前向和后向上一般并不同,因此引入了由排队引起的不对称(queue-induced asymmetry,QIA)算法作为解决主从时钟间时间误差不对称的方法。提出了一种易于应用于现有的网络设备中且不需要任何路径定时支持的基于QIA补偿的新算法,并基于OPNET仿真平台对该算法的路径时延和时间偏差进行了对比分析,充分证明了其优越性。