鉴于ORB算法在特征点匹配时基本不具备尺度不变性,结合SIFT算法思想,提出了改进的ORB算法:SIRB(ORB and SIFT)。首先生成图像的多尺度空间,并在多尺度空间里检测稳定的极值点,使得提取出的特征点具有尺度不变信息;然后使用ORB描述子对特征点进行描述,生成旋转不变性的二进制描述子;最后通过Hamming距离完成对特征点的匹配。实验结果表明,SIRB有效地解决了ORB不具备尺度不变性的缺陷,在图像尺度发生变化时,SIRB算法特征点匹配的平均准确度达到约93.3%,相比于ORB提高了约70.7%;同时SIRB和ORB两种算法的匹配速度大致相当,SIRB保留了原ORB算法的快速优越性,平均匹配速度比SIFT快约63.2倍;将提出的SIRB算法应用到视频目标跟踪系统中,取得了良好的实验效果,具有一定的应用价值。