于丹
- 作品数:7 被引量:3H指数:1
- 供职机构:太原理工大学计算机科学与技术学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术文化科学更多>>
- 基于相似指纹特征的室内定位机制研究被引量:3
- 2015年
- 针对指纹定位结果中存在较大定位误差问题,分析了离线相似指纹对应采集点的分布特征,发现存在部分相似指纹对应的采集点位置距离较远的特征,这导致了较大定位误差的出现。据此提出了一种基于阈值的Dynamic-kNN的算法来实现指纹的匹配,并进一步针对相似指纹的聚类特征设计了基于K-Means的聚类优化算法,从而大大减少了定位结果中较大误差的存在。实验表明,该算法能够将最大定位误差缩小到5m以内,同时4m以上的较大定位误差所占比例也明显下降。本研究与其他算法相比,在定位性能和算法开销上具有明显优势。
- 陈永乐于丹王泽
- 关键词:信号强度
- 新工科背景下网络协议安全课程教改探索
- 2024年
- 作为网络空间安全及相关专业的综合性核心课程,网络协议安全课程涉及多门学科,其内容复杂、理论难度大、实践性强。鉴于传统的授课模式难以契合新工科建设的培养目标和要求,课程组以新工科建设需求为基石,紧扣产业实际需求,充分利用线上线下的优势,从思政建设、课程培养体系和实践教学体系三个方面探索该课程的混合式教学模式,以期为高校新工科课程的教学改革提供新的思路和方法。
- 杨玉丽陈永乐于丹
- 关键词:网络空间安全混合式教学模式
- 基于注意力特征解耦的跨年龄身份成员推理
- 2024年
- 生成对抗网络(GANs)模型可以生成高分辨率的“不存在”的物体真实图像,近期被广泛应用于各种人工合成数据,尤其是人脸图像生成领域。然而,由于基于该模型的人脸生成器通常需要根据不同身份高度敏感的面部图像进行训练,其中存在潜在数据泄露使得攻击者能够对身份成员关系进行推断的问题。为此,首先设计对查询身份所获取样本与其实际参与训练样本之间存在巨大差异时的身份成员推理攻击,这些差异会导致基于样本推理身份成员关系的性能急剧下降;其次,在此基础上设计基于各身份解耦表征的重建误差攻击方案,在最大化消除不同样本间背景姿势等因素影响的同时,消除巨大年龄跨度导致的表征差异,进一步提高了攻击性能;最后,基于3个代表性的人脸数据集在3个主流GAN架构上训练生成模型并进行攻击,实验结果表明,在各种攻击场景下,此攻击方案较对比方法AUCROC值平均提高0.2。
- 刘宇璐武淑红于丹马垚陈永乐
- 基于BERT模型的文本对抗样本生成方法
- 2023年
- 针对现有对抗样本生成方法需要大量访问目标模型,导致攻击效果较差的问题,提出了基于BERT(Bidirectional Encoder Representations from Transformers)模型的文本对抗样本生成方法(TAEGM)。首先采用注意力机制,在不访问目标模型的情况下,定位显著影响分类结果的关键单词;其次通过BERT模型对关键单词进行单词级扰动,从而生成候选样本;最后对候选样本进行聚类,并从对分类结果影响更大的簇中选择对抗样本。在Yelp Reviews、AG News和IMDB Review数据集上的实验结果表明,相较于攻击成功率(SR)次优的对抗样本生成方法CLARE(ContextuaLized AdversaRial Example generation model),TAEGM在保证对抗攻击SR的前提下,对目标模型的访问次数(QC)平均减少了62.3%,时间平均减少了68.6%。在此基础之上,进一步的实验结果验证了TAEGM生成的对抗样本不仅具有很好的迁移性,还可以通过对抗训练提升模型的鲁棒性。
- 李宇航杨玉丽马垚于丹陈永乐
- 关键词:聚类算法
- 面向工控系统未知攻击的域迁移入侵检测方法
- 2024年
- 针对工业控制系统(ICS)数据匮乏、工控入侵检测系统对未知攻击检测效果差的问题,提出一种基于生成对抗迁移学习网络的工控系统未知攻击入侵检测方法(GATL)。首先,引入因果推理和跨域特征映射关系对数据进行重构,提高数据的可理解性和可靠性;其次,由于源域和目标域数据不平衡,采用基于域混淆的条件生成对抗网络(GAN)增加目标域数据集的规模和多样性;最后,通过域对抗迁移学习融合数据的差异性、共性,提高工控入侵检测模型对目标域未知攻击的检测和泛化能力。实验结果表明,在工控网络标准数据集上,GATL在保持已知攻击高检测率的情况下,对目标域的未知攻击检测的F1-score平均为81.59%,相较于动态对抗适应网络(DAAN)和信息增强的对抗域自适应(IADA)方法分别提升了63.21和64.04个百分点。
- 王昊冉于丹杨玉丽马垚陈永乐
- 面向图神经网络模型提取攻击的图数据生成方法
- 2024年
- 无数据模型提取攻击是基于攻击者在进行攻击时所需的训练数据信息未知的情况下提出的一类机器学习安全问题。针对无数据模型提取攻击在图神经网络(GNN)领域的研究缺乏,提出分别用GNN可解释性方法GNNExplainer和图数据增强方法GAUG-M优化图节点特征信息和边信息生成所需图数据,最终提取GNN模型的方法。首先,利用GNNExplainer方法对目标模型的响应结果进行可解释性分析得到重要的图节点特征信息;其次,通过对重要的图节点特征加权,对非重要图节点特征降权,实现图节点特征信息的整体优化;然后,使用图形自动编码器作为边信息预测模块,根据优化后的图节点特征得到节点与节点之间的连接概率;最后,根据概率增加或者删减相应边优化边信息。实验采用5个图数据集训练的3种GNN模型架构作为目标模型提取攻击,得到的替代模型达到了73%~87%的节点分类任务准确性和76%~89%的与目标模型性能的一致性,验证了所提方法的有效性。
- 杨莹郝晓燕于丹马垚陈永乐
- 基于零先验知识的室内指纹定位优化算法
- 2016年
- 针对众包方法构建指纹库数据质量低和指纹模糊相似性等问题,提出了一种基于SLAM技术的指纹数据质量优化和指纹唯一性增强的算法。利用ICNN算法完成数据关联优化,并在指纹向量中加入可信度指标来优化指纹更新过程;随后针对指纹模糊相似性设计了基于高斯插值的指纹唯一性增强优化算法,保证了指纹数据质量,从本质上提高了指纹定位的性能。实验表明,该算法能够将指纹定位的中位数误差从原始指纹的3m提高到2m,最大定位误差从8m左右下降到4m以内。
- 于丹王泽陈永乐