尝试采用可视化嗅觉技术对鲢鱼K值进行快速定量预测。利用可视化嗅觉技术对4℃恒温条件下不同冷藏天数的鲢鱼进行无损检测,获取可视化传感器阵列对样品顶空挥发性气体的响应信号;同时,利用高效液相色谱法检测鲢鱼体内三磷酸腺苷关联物的含量,算出K值;然后,采用偏最小二乘法(Partial least squares,PLS)和遗传算法偏最小二乘法(Genetic algorithm-partial least squares,GA-PLS)建立基于鲢鱼气味特征信息与K值的定量预测模型。结果显示,经遗传算法(GA)优化后原变量可从48个减少到18个,传感器可减少至11种;利用筛选出的变量建立的GA-PLS模型对鲢鱼K值的预测效果更好,预测均方根误差RMSEP=0.04,预测集相关系数Rte=0.93。研究结果表明,鲢鱼K值的实测值与预测值的相关性很高,可视化嗅觉技术能够用于定量预测鲢鱼K值。本研究为鱼类鲜度检测提供了一种准确、快捷、低成本的无损检测方法。