杨晓科
- 作品数:1 被引量:2H指数:1
- 供职机构:天津大学计算机科学与技术学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于变化密度的自适应空间聚类方法研究被引量:2
- 2014年
- 针对DBSCAN算法无法处理变化密度的问题,提出一种基于变化密度的自适应空间聚类方法。采用密度变化率来识别不同密度的簇之间的边界,且运行时自动调整参数的值。将密度定义为一个点到其第k个最近邻居的距离,若一个点的邻居的密度与该点密度的变化率小于用户给定阈值,则为相似邻居。定义核点为最邻近邻居中至少有k个是相似邻居的点,在此基础上应用DBSCAN算法进行广度优先搜索,将密度相似并且距离可达的核点及其最邻近邻居标记为同一个簇。在判断相似邻居时,根据已加入的核点的平均密度和密度变化率自动调整参数值。实验结果表明,该方法可以准确地发现任意形状、大小和密度的簇,消除孤立点,且通过自适应机制更容易设置合适参数。
- 杨亚军张坤龙杨晓科
- 关键词:自适应聚类数据挖掘