龙思源
- 作品数:2 被引量:17H指数:2
- 供职机构:中国科学院长春光学精密机械与物理研究所更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于改进的加速鲁棒特征的目标识别被引量:9
- 2017年
- 为了提高加速鲁棒特征(SURF)算法的实时性和准确性,本文提出了一种结合AGAST角点检测和改进的SURF特征描绘算法。首先利用AGAST角点检测模板检测特征点,再使用增加对角信息的哈尔小波响应来生成特征点的描述子,之后利用特征袋对产生的描述子进行编码并生成新的特征向量,最后利用支持向量机(SVM)对特征向量进行分类,完成识别。本文以SIFT和SURF算法为对照,分别进行不同视角、光照和尺度的识别实验。实验结果表明,本文算法的平均识别率为98.0%、96.9%、97.1%,平均时间分别为66.1 ms、79.3 ms、41.0 ms,在识别率上较优于SURF算法,所耗时间约是SURF算法的1/3。
- 龙思源张葆张葆宋策
- 关键词:图像处理目标识别
- 基于角点增强改进的TLD目标跟踪算法被引量:8
- 2016年
- 针对TLD算法的特征点无法有效表述目标问题,提出了一种基于角点增强改进的TLD目标跟踪算法。改进算法在跟踪模块加入了对目标表述能力更强,具有光照不敏感性和旋转不变性的Shi-Tomas角点作为跟踪特征点。跟踪器运行时,在角点经光流法跟踪和双向误差检测后,利用剩余的稳定角点定位目标窗口。对照结果表明,改进算法在面对目标抖动和形变时可以稳定跟踪;有效抑制因跟踪平滑点造成的漂移现象;提高了跟踪的稳定性。针对TLD算法跟踪过程中因在线模板积累造成的计算量持续增大、实时性持续降低的问题,提出了一种依据相似度中值的模板判断删除机制。该删除机制在模板积累到设定阈值时运行,根据模板与当前目标的相似度,删除不再具备代表性的模板;调整模板空间并更新模板数目。实验表明,该删除机制在应对模板更新快、持续时间长的跟踪情景时有效降低算法计算量,实时性可提高约20%。
- 孙保基张葆宋策龙思源
- 关键词:目标跟踪TLD角点特征