康健
- 作品数:2 被引量:23H指数:2
- 供职机构:清华大学电子工程系更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术电子电信更多>>
- 低资源条件下基于i-vector特征的LSTM递归神经网络语音识别系统被引量:21
- 2017年
- 在低资源条件下,由于带标注训练数据较少,搭建的语音识别系统性能往往不甚理想。针对此问题,首先在声学模型上研究了长短时记忆(LSTM)递归神经网络,通过对长序列进行建模来充分挖掘上下文信息,并且引入线性投影层减小模型参数;然后研究了在特征空间中对说话人进行建模的技术,提取出能有效反映说话人和信道信息的身份认证矢量(i-vector);最后将上述研究结合构建了基于i-vector特征的LSTM递归神经网络系统。在Open KWS 2013标准数据集上进行实验,结果表明该技术相比于深度神经网络基线系统有相对10%的字节错误率降低。
- 黄光许田垚康健刘加夏善红
- 关键词:语音识别
- 一种基于计算听觉场景分析的语音增强算法被引量:2
- 2015年
- 选取ETSI语音增强系统作为研究对象.该系统使用传统维纳滤波方法,在信噪比较高时降噪性能优秀,但在信噪比较低的情况下,降噪能力弱,对于脉冲噪声无较好抑制.而模拟人耳听觉特性的计算听觉场景分析技术能够比较好地弥补这一缺陷.故在ETSI算法的基础上,结合计算听觉场景分析技术,提出一种新的算法,将维纳滤波器参数估计由原本的Mel域变换到Gammatone域,并进一步利用理想率掩蔽估计对带噪信号进行信噪分离,抑制脉冲噪声.该算法在TIMIT语音库上进行了实验,结果证明,与原算法相比,提出的新算法使听觉质量在低信噪比下提升较大,脉冲噪声抑制亦明显.在低信噪比的情况下,后端语音识别系统的识别率得到提升.
- 张卫强郭璁张乔康健何亮刘加Johnson Michael T
- 关键词:语音增强计算听觉场景分析