贺静
- 作品数:2 被引量:3H指数:1
- 供职机构:北京化工大学信息科学与技术学院更多>>
- 发文基金:国家自然科学基金中央高校基本科研业务费专项资金国家高技术研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于双阶跃信号输入的Volterra模型辨识被引量:1
- 2014年
- Volterra模型作为非线性领域的一种非线性模型,由于其对工业过程可以以任意精度逼近,使得该模型有很广泛的应用研究意义。在将该模型运用到实际控制系统中之前,模型的高精度辨识显得尤为重要。在以往针对Volterra模型的辨识算法中,基本上主要是采用通用辨识算法识别模型参数,比如最小二乘法及各种改进的最小二乘法。这些通用的辨识算法在辨识Volterra模型时,不能充分考虑其非线性特点,同样不能在辨识过程中充分利用该特点。本文在充分考虑Volterra模型非线性的前提下,提出了一种基于双阶跃信号输入的Volterra模型辨识算法,该算法辨识原理简单,计算量较小,论文最后将该辨识算法应用到典型非线性CSTR系统的的辨识中,辨识结果证明了算法的有效性。
- 贺静
- 关键词:VOLTERRA系统辨识非线性
- 基于Volterra模型的预测控制及应用被引量:2
- 2015年
- 由于工业实践的需要,非线性预测控制近年来受到广泛地关注.Volterra模型是一类特殊的非线性模型,非常适合描述工业过程中的无记忆非线性对象.传统的基于Volterra模型的控制器合成法及迭代计算预测控制器法计算量大,且不便于处理控制约束.非线性模型预测控制求解是典型的非线性规划问题,序列二次规划(sequential quadratic program,SQP)算法是求解非线性规划问题常用方法之一.针对Volterra非线性模型预测控制求解问题,本文将滤子法与一种信赖域SQP算法相结合,提出一种改进SQP算法用于基于非线性Volterra模型的带控制约束的多步预测控制求解,并分析了所提方法的收敛性.工业实例仿真结果证实了所提方法的可行性与有效性.
- 贺静赵众董叶伟
- 关键词:非线性模型预测控制