用户在互联网发布信息的自由性对Web信息内容过滤提出新的挑战。为此,给出一种自学习的两级内容过滤算法SAFE(self-study algorithm of filtering Chinese text content)。SAFE以数据流的方式处理文本,并根据Apriori性质,在不依赖词典的情况下,通过挖掘关键字和关键词实现对文档的两级内容过滤。利用真实世界Web文档验证了SAFE的有效性,实验表明对给定的主题进行文本内容过滤,SAFE的查全率达到93.75%以上,查准率达到100%,执行时间能够满足Web应用的实时性要求。