The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase.
Quantitative analysis was employed to establish reasonable and practical homogenization model of INCONEL718 superalloy. Metallographic method was applied to determining the incipient melting temperature. The result shows that the incipient melting temperature of d406 mm INCONEL718 ingot is situated between 1 170 ℃ and 1 180 ℃. In order to predict the elimination process of Laves phase in quantity, a time and temperature dependent homogenization model was proposed. Among all the elements in the as-cast microstructure, Nb and Ti are the most positive segregated elements. The diffusion coefficients of alloying elements at 1 140 ℃ were obtained by fitting the linear relationship between In δ (δ residual segregation index) and time. The calculation results of diffusion coefficients were compared with other two commercial Nb-bearing superalloys.