The wind pressure characteristics on a saddle roof at wind direction along the connection of the low points are systematically studied by the wind tunnel test. First, the distributions of the mean and the fluctuating pressures on the saddle roof are provided. Through the wind pressure spectra, the process of generation, growth and break down of the vortex on the leading edge is presented from a microscopic aspect and then the distribution mechanism of the mean and fluctuating pressures along the vulnerable leading edge is explained. By analysis of the wind pressure spectra near the high points, it can be inferred that the body induced turbulence reflects itself as a high-frequency pressure fluctuation. Secondly, the third-and fourth-order statistical moments of the wind pressure are employed to identify the non-Gaussian nature of the pressure time history and to construct an easy tool to localize regions with a non-Gaussian feature. The cause of the non-Gaussian feature is discussed by virtue of the wind pressure spectra. It is concluded that the non-Gaussian feature of the wind pressure originates from the effects of flow separation and body-induced turbulence, and the former effect plays an obvious role.