周海英
- 作品数:1 被引量:1H指数:1
- 供职机构:江南大学机械工程学院更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 聚类和优化支持向量机的冷轧带钢表面缺陷分类被引量:1
- 2016年
- 针对具有小样本、非线性、高维模式识别特点的冷轧带钢表面缺陷,且部分缺陷分布零散、不相连而导致后期识别数量增加、识别率低的情况,提出聚类与优化支持向量机相结合的改进分类算法。利用矩形框将缺陷进行标记,实现缺陷聚类合并,减少后期缺陷识别分类个数,便于后期正确识别判断;利用粒子群优化算法结合交叉验证自动选取最优参数,确定支持向量机结构,并结合实际生产线上出现频率较高的5类带钢缺陷进行分类研究。实验结果表明,相较于改进BP神经网络和网格优化的支持向量机,聚类与优化支持向量机相结合的改进分类算法不仅解决了位置接近的同种缺陷重复分类的问题,而且耗时短、缺陷正确识别率可达98%,符合实际生产线需求。
- 化春键周海英
- 关键词:冷轧带钢聚类支持向量机