基于傅里叶神经网络(Fourier neural network,FNN)结构的单输入、输出Hammerstein模型,提出了一种适用于变压器绕组振动系统的非线性建模方法。FNN和自回归滑动平均模型(auto-regressive and moving average model,ARMA)(分别作为模型中的非线性静态模块和线性动态模块)采用前向更新策略及最速下降法对模型进行训练,确定模型参数。该建模方法在实际110 kV变压器的绕组振动系统的建模及绕组振动波形预测中显示了较高的有效性及准确性。此外,还研究和分析了绕组故障对模型特性的影响机制,提出基于模型延迟阶数的绕组故障特征及其提取方法,并将该方法及其特征量应用于实际110 kV变压器的绕组故障实验中,所得结果表明该特征量可有效反映变压器绕组的机械结构变化。
以独立成分分析(ICA)为代表的主流盲分离技术对信号独立性要求较高,难以分离具有高度相关性的变压器铁芯与绕组振动信号。为了分离变压器铁芯和绕组振动信号,建立了变压器振动信号混合模型,在该模型基础上提出了一种基于时频比盲源分离算法(TIFORM-BSS)的变压器振动信号分离方法。将该方法分别应用于分离人工混合后的110 k V三相变压器油箱壁信号和实际运行中的500 k V单相变压器油箱壁振动信号,结果表明该方法能够有效分离具有强相关性的变压器绕组和铁芯振动信号。