为了在高效地保护数据隐私不被泄露的同时保证数据效用,提出了一种基于权重属性熵的分类匿名方法(Weight-properties Entropy for Classification Anonymous,WECA)。该方法在数据分类挖掘的特定应用背景下,通过信息熵的概念来计算数据集中不同准标识符属性对敏感属性的分类重要程度,选取分类权重属性熵比率最高的准标识符属性对分类树进行有利的划分,同时构建了分类匿名信息损失度量,在更好地保护隐私数据的前提下确保了数据分类效用。最后,在标准数据集上的实验结果表明,该算法在保证较少的匿名损失的同时具有较高的分类精度,提高了数据可用性。
间谍软件是攻击者广泛采用的一类信息窃取类恶意软件,具有高威胁性、高隐蔽性等特点.间谍软件在实施窃密行为时通常采用触发执行策略,使得基于软件行为的动态检测方法难以在短时间内将其捕获,故上述方法检测间谍软件效果不佳.针对该问题,本文采用主动诱导间谍软件执行窃密行为的思路,从应用程序编程接口(Application Programming Interface,API)层面分析不同诱导操作和诱导强度对间谍软件的不同诱发效果,进而提出一种基于诱导机制的间谍软件检测方法(Spyware Detection Method based on Inducement Mechanism,SDMIM).SDMIM包含诱导操作筛选、软件“活跃度”计算、间谍软件判别3个阶段,能够适用于多种类型间谍软件的诱导式检测.实验结果表明,SDMIM能够在包含5种不同类型间谍软件的样本集上获得95.98%的检测准确率.
加密型勒索软件通过加密用户文件来勒索赎金.现有的基于第一条加密应用编程接口(Application Programming Interface,API)的早期检测方法无法在勒索软件执行加密行为前将其检出.由于不同家族的勒索软件开始执行其加密行为的时刻各不相同,现有的基于固定时间阈值的早期检测方法仅能将少量勒索软件在其执行加密行为前准确检出.为进一步提升勒索软件检测的及时性,本文在分析多款勒索软件运行初期调用动态链接库(Dynamic Link Library,DLL)和API行为的基础上,提出了一个表征软件从开始运行到首次调用加密相关DLL之间的时间段的概念——运行初始阶段(Initial Phase of Operation,IPO),并提出了一个以软件在IPO内产生的API序列为检测对象的勒索软件早期检测方法,即基于API潜在语义的勒索软件早期检测方法(Ransomware Early Detection Method based on API Latent Semantics,REDMALS).REDMALS采集IPO内的API序列后,采用TF-IDF(Term Frequency-Inverse Document Frequency)算法以及潜在语义分析(Latent Semantic Analysis,LSA)算法对采集的API序列生成特征向量及提取潜在的语义结构,再运用机器学习算法构建检测模型用于勒索软件检测.实验结果显示运用随机森林算法的REDMALS在构建的变种测试集和未知测试集上可分别获得97.7%、96.0%的准确率,且两个测试集中83%和76%的勒索软件样本可在其执行加密行为前被检出.
传统的勒索软件动态检测方法需要收集较长时间的软件行为,难以满足勒索软件及时检测的需求.本文从勒索软件及时检测的角度出发,提出了“勒索软件检测关键时间段(Critical Time Periods for Ransomware Detection,CTP)”的概念,并基于CTP的要求提出了一种基于应用程序编程接口(Application Programming Interface,API)短序列的勒索软件早期检测方法(Ransomware Early Detection Method based on short API Sequence,REDMS).REDMS以软件在CTP内执行时所调用的API短序列为分析对象,通过n-gram模型和词频-逆文档频率算法对采集到的API短序列进行计算以生成特征向量,然后运用机器学习算法建立检测模型对勒索软件进行早期检测.实验结果显示,REDMS在API采集时段为前7s且使用随机森林算法时,分别能以98.2%、96.7%的准确率检测出已知和未知的勒索软件样本.
挖矿恶意软件会损害系统安全,缩减硬件寿命,以及造成大量电力消耗,实施对挖矿恶意软件的早期检测以及时阻止其损害对于维护系统安全至关重要。现有的基于动态分析的挖矿恶意软件早期检测方法未能兼顾检测的及时性和准确率。为及时且准确地检测挖矿恶意软件,将挖矿恶意软件运行初期所调用的一定长度的API(application programming interface)名称、API操作类别和调用API的DLL(dynamic link library)进行融合以更充分地描述其在运行初期的行为信息,提出AECD(API embedding based on category and DLL)词嵌入方法并进一步提出基于AECD词嵌入的挖矿恶意软件早期检测方法(CEDMA)。CEDMA以软件在运行初期所调用的一定长度的API序列为检测对象,使用AECD词嵌入和TextCNN(text convolutional neural network)建立检测模型来实施对挖矿恶意软件的早期检测。实验结果显示,CEDMA以软件运行后首次调用的长度为3000的API序列作为输入时,可分别以98.21%、96.76%的Accuracy值检测实验中已知和未知的挖矿恶意软件样本。
边缘计算将计算资源部署在离终端用户更近的边缘计算节点,从待选的位置中选择合适的边缘计算节点部署位置能提升边缘计算服务的节点容量以及用户服务质量(QoS)。然而,目前对于如何放置边缘计算节点以降低边缘计算成本的研究较少。此外,在边缘服务的时延等QoS因素的约束下,目前尚没有一种边缘计算节点部署算法能最大限度地提高边缘服务的鲁棒性同时最小化边缘节点部署成本。针对上述问题,首先,通过建立计算节点、用户传输时延和鲁棒性的模型将边缘计算节点放置问题转化为带约束条件的最小支配集问题;随后,提出重合支配的概念,基于重合支配衡量网络鲁棒性,设计了基于重合支配的边缘计算节点放置算法——CHAIN(edge server plaCement algoritHm based on overlApping domINation)。仿真实验结果表明,与面向覆盖的近似算法和面向基站的随机算法相比,CHAIN的系统时延降低了50.54%与50.13%。