为了兼顾电网经济与节能的双重目标,笔者基于全寿命周期成本(life cycle costs,LCC)理论,考虑节能因素,建立了一种新的变压器设计方案LCC评价方法。通过全面分析LCC各项组成,考虑负荷变化对负载损耗的动态影响,提出了更加完善的变压器LCC模型,并通过折现率与通货膨胀率对其进行了经济学修正。基于上述完善的变压器LCC模型,引入临界电价的概念,提出了损耗外LCC与损耗电量的对比分析方法,实现了一个变压器LCC评价辅助决策平台。以某500 k V变压器方案比选为例,论证了评价方法的实用性,并验证了其节能效果。
针对城市园区微网中存在的"储-荷"互动特性,对可控空调负荷群进行集群需求响应控制,调节空调负荷曲线形成"虚拟储能"效应。提出基于连续状态变量约束的最优控制(continuous state constraints-based optimal control,CSCOC)模型,考虑"虚拟储能"和储能电池协同运行特性,构建了平抑微网联络线功率波动的策略。最优控制模型包括:1)描述"虚拟储能"系统物理机理的状态空间方程;2)构建了以功率为基础定义的"虚拟储能"虚拟荷电状态(virtual state of charge,VSOC),并给出"虚拟储能"系统、电池储能运行等式与不等式约束集;3)表示最优控制性能的目标函数。通过最优控制模型,实现微网联络线功率与设定目标参考值匹配。最后,通过算例进行灵敏度计算,分析了风电渗透率、电池容量等因素变化对最优控制算法的影响。结果表明,基于最优控制的"虚拟储能"和电池储能的优化协调,实现了精确追踪设定目标参考值的最优储能响应额度分配,能够保证电池储能荷电状态在合理范围之内,保证空调负荷运行的舒适性,维持用户进一步参与需求响应的积极性。
由于新能源发电装机容量不断增加、电网建设不同步等原因,出现了弃风、弃光等现象,造成了能源的浪费。通过综合能源系统形成多元消纳技术和多元存储技术可以增加可再生能源的就地消纳,提高风机利用率。该文首先介绍了电转气(power to gas,P2G)技术的原理,然后基于微网型能源集线器模型,将含P2G多源储能型微网系统划分为供给侧、转换组件和负荷侧三个部分进行模型。在此基础上建立基于经济最优的微网系统日前优化调度模型,考察P2G消纳可再生能源的潜力。最后在算例中采用三种不同场景的微网系统进行验证,结果证明P2G对弃风现象有很大的改善作用,具有良好的应用前景。