针对少资源语言的语音关键词检出技术受到了广泛关注。该文在基于动态时间规整(dynamic time warping,DTW)的关键词检出框架下,提出了基于音素边界的局部匹配策略,用以解决基于样例的语音关键词检出任务中的近似查询问题。在QUESST 2014评测数据上采用多种特征进行了实验验证。实验结果显示:基于音素边界的局部匹配策略不仅在近似查询T2和T3任务上的检出效果明显提升,在精确查询T1任务上也获得了有效提升。随后的系统融合实验表明,该策略能够大幅提升融合系统的性能。
语音模式发现是从语音流中检测出重复出现的音节、词或短语等语音单元的任务。该文基于分段动态时间规整(segmental dynamic time warping,SDTW)算法,尝试直接在中文语料上进行语音模式发现。Mel频率倒谱系数(Mel frequency cepstral coefficient,MFCC)特征在衡量两个语音片段声学相似度上不够鲁棒,特别是针对多说话人语料,语音模式发现的效果大打折扣。该文尝试了基于音素后验概率(posteriorgram)的特征表示方法。实验表明:在多说话人和单说话人的语料上,音素后验特征均可以得到比MFCC更好的效果。该文尝试了用词边界确定分段进行语音模式发现,这种设置可以看作基于SDTW进行模式发现的效果上限。实验表明:在预知词边界的情况下,效率和正确率都得到了明显提升。