夏芳
- 作品数:2 被引量:24H指数:2
- 供职机构:浙江大学环境与资源学院农业遥感与信息技术应用研究所更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划国家重点实验室开放基金更多>>
- 相关领域:理学农业科学更多>>
- 基于省域尺度的农田土壤重金属高光谱预测被引量:15
- 2015年
- 利用浙江省36个县市的643个农田耕层土样的可见-近红外反射率数据以及重金属与有机质含量数据,分析了Ni、Cu、As、Hg、Zn、Cr、Cd、Pb含量与有机质含量的相关性,对比了不同重金属元素与有机质敏感波段的位置,并建立了各重金属元素含量的偏最小二乘回归(PLSR)模型.研究结果表明,Ni、Cr与有机质的相关性最优,As最差,相关系数分别为0.54、0.59、0.20,各重金属元素与有机质的相关系数与它在前三个主成份载荷图中与有机质的距离成反比;不同的重金属元素与有机质高光谱敏感波段的重叠度、回归系数的正负一致性具有明显差异,与有机质相关性越高的元素,其重叠度也越高、正负一致性也越好;在所有8种重金属元素的PLSR预测模型中,Ni、Cr的建模与预测效果较好,RPD值分别为1.94、1.80,模型具有一般的定量预测能力,其余6种重金属元素预测模型的RPD值均在1.00和1.40之间,模型只具备区别高值和低值的预测能力.该研究结果为大尺度区域土壤重金属污染的高光谱遥感监测提供了一定的理论依据与参考.
- 夏芳彭杰王乾龙周炼清史舟
- 关键词:农田土壤重金属污染
- 星地多源数据的区域土壤有机质数字制图被引量:9
- 2015年
- 土壤有机质(SOM)是全球碳循环、土壤养分的重要组成部分,精确估算土壤有机质含量具有重要意义。本文以中国东北—华北平原为研究区,收集了1078个土壤样本,以遥感数据(MODIS,TRMM和STRM数据)与土壤地面光谱数据为预测因子,运用基于树形结构的数据挖掘技术构建土壤有机质-环境预测因子模型进行数字土壤制图。通过不同建模样本数建模精度比较,选择300个样本数时的模型为最优模型。建模结果表明土壤光谱和气候因子是研究区SOM变异的主控因子,生物因子次之,而地形因子影响最小。预测结果经检验,RMSE为7.25,R2为0.69,RPD为1.53制图结果与基于第二次全国土壤普查数据的土壤有机质地图具有相似的分布规律,呈现SOM自东北向西南递减的趋势。通过比较分析发现,经过20年左右的土地开发与利用,研究区低SOM和高SOM含量土壤面积减少,而中等SOM含量土壤面积增加。
- 周银刘丽雅卢艳丽马自强夏芳史舟
- 关键词:数字制图土壤有机质土壤光谱