陈东辉
- 作品数:5 被引量:50H指数:4
- 供职机构:西安电子科技大学计算机学院更多>>
- 发文基金:国家科技支撑计划国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 两阶段混合粒子群优化聚类被引量:4
- 2012年
- 为解决数据集样本维数较高时已有粒子群优化K均值算法计算速度较慢且聚类结果不稳定的问题,利用第1阶段聚类层次凝聚聚类获得准确率较高的子簇集合,作为粒子群优化K均值聚类算法初始聚类中心的搜索空间,进行第2阶段聚类.提出了一种简化的粒子编码方法,以减小样本维数对计算复杂度的影响;引入混沌的思想,以保持粒子种群的多样性,从而避免粒子群优化算法可能出现的早熟现象.通过两阶段聚类,有效地融合了粒子群优化、层次聚类与划分聚类算法的优点.在多个UCI数据集上的聚类结果表明,与几种对比算法聚类结果的最优值相比,其纯度分别提高了1%~8%,且耗时减少50%以上.
- 王纵虎刘志镜陈东辉
- 关键词:聚类相异度粒子群优化初始聚类中心
- 一种基于粒子群优化的可能性C均值聚类改进方法被引量:7
- 2012年
- 提出了一种基于粒子群优化的可能性C均值(Possibilistic C-means,PCM)聚类改进方法。该方法首先通过改进PCM算法的目标函数来计算数据模式的隶属度矩阵和聚类中心完成粒子编码,从而降低算法对初始中心的敏感,提高聚类的精度;其次,通过粒子群优化(Particle Swarm Optimization,PSO)算法对编码进行优化,以有效地克服PCM聚类算法容易导致聚类一致性和陷入局部最优解的缺点,减少算法的迭代次数。通过人造数据集和UCI数据集上的实验,表明该算法在计算复杂度、聚类精度和全局寻优能力方面表现得较为突出。
- 陈东辉刘志镜王纵虎
- 关键词:模糊聚类粒子群优化模糊C均值
- 一种改进的粒子群优化快速聚类算法被引量:15
- 2012年
- 提出了一种改进的基于粒子群优化的快速K均值算法,有效克服了K均值算法对初始聚类中心敏感和容易陷入局部最优从而影响聚类效果等缺点.与已有的粒子群优化聚类算法相比,该算法通过对样本各维属性进行规范化,预先计算样本的相异度矩阵,提出了一种简化的粒子的编码规则,基于相异度矩阵进行粒子群优化K均值聚类,在保证聚类效果的基础上,有效降低了计算的复杂度.在多个UCI数据集上的实验结果表明,该算法是有效的。
- 王纵虎刘志镜陈东辉
- 关键词:粒子群优化聚类K均值相异度适应度
- 基于统计学习的自适应文本聚类被引量:2
- 2012年
- 针对文本数据的高维性和稀疏性从而使传统的聚类算法在文本聚类应用中的表现不能让人满意的问题,通过计算文档相似度矩阵,在聚类过程中动态地统计学习已划分和未划分文本集合的相关信息,探测剩余未划分的数据集中的与已划分类簇覆盖度较小的最大密集区域,逐步生成预定数目的初始聚类中心集合,最后将剩余文档划分到最相似的初始聚类中心集合完成聚类,从而有效地减小了划分聚类算法对初始聚类中心的敏感性。算法中的一些阈值参数均通过在聚类过程中动态地对数据集进行统计学习得到,避免了多数聚类算法通过经验或实验设定阈值参数的盲目性,在不同数据集上的鲁棒性更强。在几个中英文数据集上的实验结果表明本文算法在不同数据集上表现良好,优于CLUTO聚类器中的聚类算法。
- 王纵虎刘志镜陈东辉
- 关键词:聚类向量空间模型相似度阈值
- 基于粒子群优化的模糊C-均值聚类算法研究被引量:23
- 2012年
- 针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单有效的粒子编码方法,将初始聚类中心和模糊加权指数m同时进行粒子群优化搜索,在得到最优适应度的同时,m也收敛到一个稳定的最优解,从而有效地解决了上述问题。算法在人工合成数据集和多个UCI数据集上都取得了较好的效果。
- 王纵虎刘志镜陈东辉
- 关键词:聚类模糊C-均值聚类粒子群优化初始聚类中心