图像深度信息获取是机器视觉领域的活跃研究课题之一。将图像深度估计问题归结为模式识别问题,以单目图像深度为模式类,在多尺度下从图像块中提取绝对和相对深度特征,并选择表征上下文关系的DRF(Discriminative Random Field)方法来表述某图像块的深度和其邻域深度之间的关系,从而构建起基于DRF-MAP(Maximum a posteriori)的单目图像深度估计模型。通过实验,得到了一类单目图像对应的深度图像,从而证明了单目图像深度估计模型对应的改进算法的有效性。
图像深度获取是机器视觉领域活跃的研究课题。将图像深度估计问题归结为模式识别问题,以单目图像深度为待分连续模式类,在多尺度下对图像块提取绝对和相对深度特征,选择表征上下文关系的MRF(Markov Random Field)-MAP(Maximum a posteriori)方法,建立拉普拉斯模型,表述某图像块的深度和其邻域深度之间的关系。实验得到了某一类单目图像对应的深度图像,证明了该算法的有效性。