为了提高滚动轴承健康状态评估的分类精度,提出了基于局部均值分解(Local mean decomposition,简称LMD)和具有故障样本的支持向量数据描述(Support Vector Data Description,简称SVDD)相结合的滚动轴承故障状态识别方法。该方法首先将利用LMD方法进行滚动轴承振动信号的分解,得到一系列PF(乘积函数,product function)分量之和并具有物理意义,接下来对含有主要故障信息的PF分量进行能量计算并构造特征向量,最后将其输入SVDD分类器,进行滚动轴承的健康状态评估。实验结果证明该方法的可行性和有效性。
针对滚动轴承的故障振动信号的非线性非平稳性,提出了一种基于局部均值分解(Local Mean Decomposition, LMD)方法和逻辑回归(LR)的滚动轴承故障诊断方法。该方法将采集到的滚动轴承内圈、外圈振动信号进行LMD方法处理后,采用遗传算法(GA)和逻辑回归结合进行模型中的参数选择,通过逻辑回归进行训练和测试,结果表明该方法可以有效地对滚动轴承故障类型进行识别。