文章将深度学习应用于颈动脉斑块超声图像识别,分析讨论了不同感兴趣区域(Region of Interest,ROI)选取方式对卷积神经网络识别斑块性能的影响,并通过迁移学习来训练卷积神经网络。实验结果表明,采用分割出血管内外膜的ROI作为训练集时,网络的识别能力最好,受试者操作特性(Receiver Operating Characteristic,ROC)曲线下面积为0.972。另外,用分割出血管内外膜的ROI对网络进行预训练,之后再用原始ROI进行微调,也可以有效提高卷积神经网络对原始ROI的识别能力,ROC曲线下面积从0.802提高至0.856。