针对经典BP神经网络在入侵检测应用中收敛速度慢、学习性能不够理想等缺陷,以消除原始数据中的冗余信息、提升入侵检测算法的检测性能为目的,综合采用主成分分析法和附加动量法,提出了一种基于PCA-BP神经网络的入侵检测方法,通过对数据的特征选择和对网络的权值修正,对经典BP神经网络算法进行了拓展和改进。首先对网络数据集进行标准化处理,并对处理后的数据集进行降维处理以确定主分量的特征数,最后将处理完成后的数据集输入到改进的BP神经网络中进行检测。通过在KDD Cup 1999网络数据集上的大量实验证明,该方法在大部分网络环境,尤其是在训练样本较为充足的网络环境中时,系统模型的收敛性、检测效率和检测准确率上均优于经典BP神经网络方法和半监督入侵检测方法。