提出了利用太阳帆进行大偏心率伴飞卫星轨道控制的方法.伴飞卫星围绕其惯量主轴做角速度恒定的自转,其惯量主轴在惯性系内指向保持不变.对伴飞卫星的控制分为轨道面的控制和轨道面内控制两部分.在控制过程中,优先考虑轨道面内的控制,在轨道面内控制不能进行(或者因为几何原因不能进行轨道面内控制)时,进行轨道面的控制.通过滑膜控制方法(Sliding Mode Control)计算轨道面内控制需要的控制力的方向和大小.得到需求的控制力要求后,推算出在控制过程中太阳帆相对于伴飞卫星主体的角度解析表达式.通过控制太阳帆的方向得到所需的不同的控制力.整个控制过程只针对伴飞卫星,主星处于自然飞行状态.最后对于这种控制方法进行数值验证.在无摄运动状态下通过控制系统进行伴飞轨道的轨道调整和误差消除,在考虑4阶非球形引力和第三体引力摄动情况下进行伴飞轨道的轨道维持.数值结果表明通过这种控制方法伴飞轨道能够保持轨道误差小于5 m.
利用CHAMP(CHAllenging Minisatellite Payload)、GRACE-A(Gravity Recovery and Climate Experiment-A)、SWARM-C(The Earth's Magnetic Field and Environment Explorers-C)等3颗极轨卫星的资料,研究360—480km高层大气密度在低纬度区域的午夜极大值(Midnight Density Maximum,MDM)现象.MDM一般出现在23:00-02:00 LT(Local Time)之间,峰值位置在低纬度15°以内,谷值位置在中纬度35°-45°附近,整体略偏向南半球,振幅约为平均密度的26%.随着高度增大以及太阳辐射水平的增强,MDM振幅呈减小趋势;冬至和夏至日附近的季节效应会减弱MDM振幅,在春秋分日的振幅最大.用3个主流大气模型DTM2000(Drag Temperature Model 2000),NRLMSISE00(US Naval Research Laboratory,Mass Spectrom-eter and Incoherent Scatter radar)和JB2008(Jacchia-Bowman 2008 model)对MDM进行模拟,JB2008没有刻画出MDM现象;另两个模型低估了MDM效应,在360km和480km两个高度DTM2000模型的振幅仅为观测的46%和53%,NRLMSISE00模型仅为观测的33%和26%;模型没有准确刻画出MDM与高度、辐射水平和季节的关系.联合3颗卫星的资料,研究了-种基于地理纬度的6阶勒让德多项式,同时融合地方时和高度因素的经验函数,在振幅和相位上可以较好地刻画MDM特征,相关系数达到0.923,可为大气密度模型的修正提供借鉴,服务于低轨道航天器高精度轨道预报.