蝗虫显微切片图像在获取的过程中不可避免地会受到噪声污染,其纹理、边缘与噪声又都属于高频分量,单独使用小波变换或偏微分方程(partial differential equation,PDE)扩散的方法都不能在有效去噪的同时保持边缘、纹理等。针对这一问题,提出了基于自适应小波PDE的去噪算法。首先对蝗虫切片含噪图像进行sym5小波软阈值去噪,分解层数根据去噪后图像的PSNR(peak signal to noise ratio)值自适应地选择,阈值门限使用Birge-Massart处罚算法获取。然后在此去噪的基础上进行Perona-Malik(PM)模型去噪,迭代次数根据去噪后图像的PSNR值自适应地选择,梯度阈值根据图像自身的2范数获取。为了验证所提出算法的去噪性能,进行了与常用去噪算法的对比试验。试验结果表明:视觉上,采用本文算法去噪后的图像噪声点较少且边缘、纹理清晰;客观上,采用该文算法去噪后的图像PSNR值比使用维纳滤波高出2 d B左右,比使用中值滤波高出3 d B左右,比使用小波阈值去噪高出2 d B左右,比使用PM模型去噪高出1 d B左右,并且在结构相似性(structural similarity image measurement,SSIM)上采用该文算法去噪后的图像与原始图像的相似度最高。因此,将自适应小波PDE的算法应用于蝗虫切片去噪是可行的、有效的,为其后续处理提供了技术支持。
农田遥感图像在采集过程中会受到噪声影响,为得到准确的农田遥感图像数据,应对获取的农田遥感图像进行去噪预处理。农田遥感图像中的纹理承载了重要信息,在图像降噪的同时保持或增强图像纹理具有重要意义。由于纹理和噪声一样,在频域表现为高频信号,以分解和重构算法为基础的常见滤波(含小波变换)方法在降噪的同时,也会造成纹理清晰度的下降。该文结合农田遥感图像纹理呈现出来的直线特性,将剪切波(Shearlet)和变分理论相结合,提出了一种新的遥感农田图像保纹理降噪方法。该方法首先对较大的遥感图像分块进行shearlet变换,在降噪的同时识别不同图块图像的纹理含量;对细小纹理含量较少的平滑区域,采用保边降噪变分模型去除shearlet变换带来的人工伪影。为避免子图块边界带来的边界效应,该文基于中心仿射变换理论提出了一种新的图像延拓方法,有效提高了图像降噪的效果。试验结果表明,该文算法去噪后的峰值信噪比(peak signal to noise ratio,PSNR)平均值比全变分模型去噪算法大1 d B,该文算法去噪后的PSNR平均比曲线波去噪算法大2 d B。同基于Symmlet小波的Shearlet算法相比,该文算法处理后农田遥感图像中伪影减少,在高斯噪声标准偏差σ为10、20和30 d B时,峰值信噪比PSNR分别提高了13.99%、9.69%和7.75%。
蝗虫显微切片图像纹理边缘细节丰富,在图像获取、增强等预处理过程中经常会受到外部噪声的干扰,因此针对蝗虫切片图像去噪同时并保留纹理边缘细节的探索是研究不同蝗虫种类细胞构造的基础。基于张量的传统二维小波因其滤波器各向同性,只能表示水平和垂直两个方向,在去噪的同时会把图像中边缘纹理等细节模糊,而剪切波构造的滤波器各向异性,能够表示多个方向,这些优点使得剪切波可以有效地处理高维数据,在逼近奇异曲线时达到最优逼近。本文提出的基于Meyer窗函数的剪切波算法可以识别出图像边缘和纹理,并在去噪的同时保留纹理,以Meyer小波作为剪切波基函数,利用Meyer小波函数和尺度函数构造窗函数,然后采用Meyer窗函数来建立各向异性剪切波滤波器,再利用该剪切波滤波器对蝗虫切片图像进行多尺度分析,经过剪切波变换获得剪切波系数,最后应用硬阈值方法去除蝗虫切片图像噪声系数,经过逆变换得到蝗虫切片去噪图像。采用经典图像质量评价指标均方误差(MSE)、峰值性噪比(PSNR)、结构相似度(SSIM)对本文算法去噪性能进行评价,在噪声标准差等于30时,将本文算法与Meyer小波、偏微分方程等去噪方法进行比较,其中PSNR比Meyer小波提高2.5 d B左右,比偏微分方程算法的PSNR提高2 d B左右。仿真试验结果表明,本文算法去噪后的蝗虫切片图像去噪效果明显优于其他传统去噪算法,去噪结果在视觉效果上也优于其他传统去噪算法。