物种分布模型是物种研究和保护者常用的工具.不同模型的预测结果可能相差很大,对研究者选择模型造成一定的难度.本研究使用大熊猫的实际分布数据评估了两种常见物种分布模型Biomod2和最大熵模型(MaxEnt)的表现,运用ROC曲线下面积(area under the curve,AUC)、真实技巧统计值(true skill statistics,TSS)、KAPPA统计量3种指标综合评估了两种模型预测结果的准确度.结果表明:当使用的物种分布数据和模拟重复次数足够多的时候,两者都能够给出相当准确的预测.相对于MaxEnt,Biomod2的预测准确度更高,尤其是在物种分布点稀少的情况下.然而,Biomod2使用难度较大,运行时间较长,数据处理能力有限.研究者应基于对预测结果的误差要求来选择模型.在误差要求明确且两个模型都能满足误差要求时,建议使用MaxEnt,否则应优先考虑使用Biomod2.